Full Article - Open Access.

Idioma principal


Amstutz, S.; Novotny, A. A.; Neto, E. A. de Souza;

Full Article:

An algorithm for topology optimization of elastic structures under plane stress subject to the Drucker-Prager stress constraint is presented. The algorithm is based on the use of the topological derivative of the associated objective functional in conjunction with a level- set representation of the structure domain. In this context, a penalty functional is proposed to enforce the point-wise stress constraint and a closed formula for its topological derivative is derived. The resulting algorithm is of remarkably simple computational implementation. It does not require post-processing procedures of any kind and features only a minimal number of user-defined algorithmic parameters. This is in sharp contrast with current procedures for topological structural optimization with local stress constraints. The effectiveness and efficiency of the algorithm presented here are demonstrated by means of numerical examples. The examples show, in particular, that it can easily handle structural optimization problems with underlying materials featuring strong asymmetry in their tensile and compressive yield strengths.

Full Article:

Palavras-chave: topological sensitivity, topological derivative, topology optimization, Drucker- Prager criterion, local stress constraint.,


DOI: 10.5151/meceng-wccm2012-20022

Referências bibliográficas
  • [1] G. Allaire. Conception optimale de structures. Volume 58 of Math´ematiques et applica- tions. Springer-Verlag, Berlin, 2007.
  • [2] G. Allaire, F. Jouve, Andamp; H. Maillot. Topology optimization for minimum stress design with the homogenization method. Structural and Multidisciplinary Optimization, 28(2- 3):87–98, 2004.
  • [3] G. Allaire Andamp; F. Jouve. Minimum stress optimal design with the level-set method. Engi- neering Analysis with Boundary Elements. Special issue, 32(11):909–918, 2008.
  • [4] S. Amstutz. Sensitivity analysis with respect to a local perturbation of the material prop- erty. Asymptotic Analysis, 49(1-2):87–108, 2006.
  • [5] S. Amstutz Andamp; H. Andrä. A new algorithm for topology optimization using a level-set method. Journal of Computational Physics, 216(2):573–588, 2006.
  • [6] S. Amstutz. A penalty method for topology optimization subject to a pointwise state constraint. ESAIM: Control, Optimisation and Calculus of Variations, 16(03):523–544, 2010.
  • [7] S. Amstutz, S.M. Giusti, A.A. Novotny Andamp; E.A de Souza Neto. Topological derivative for multi-scale linear elasticity models applied to the synthesis of microstructures. Inter- national Journal for Numerical Methods in Engineering, 84:733–756, 2010.
  • [8] S. Amstutz Andamp; A.A. Novotny. Topological optimization of structures subject to von Mises stress constraints. Structural and Multidisciplinary Optimization, 41:407–420, 2010.
  • [9] M. P. Bendsøe Andamp; N. Kikuchi. Generating optimal topologies in structural design using a homogenization method. Computer Methods in Applied Mechanics and Engineering, 71(2):197–224, 1988.
  • [10] M. P. Bendsøe Andamp; O. Sigmund. Topology optimization. Theory, methods and applica- tions. Springer-Verlag, Berlin, 2003.
  • [11] M. BurgerAndamp; R. Stainko. Phase-field relaxation of topology optimization with local stress constraints. SIAM Journal on Control and Optimization, 45(4):1447–1466, 2006.
  • [12] J. C´ea, S. Garreau, Ph. Guillaume Andamp; M. Masmoudi. The shape and Topological Op- timizations Connection. Computer Methods in Applied Mechanics and Engineering, 188(4):713–726, 2000.
  • [13] E.A. de Souza Neto, D. Peri´c Andamp; D.R.J. Owen. Computational Methods for Plasticity. Theory and Applications. Wiley, Chichester, 2008.
  • [14] P. Duysinx Andamp; M. P. Bendsøe. Topology optimization of continuum structures with lo- cal stress constraints. International Journal for Numerical Methods in Engineering, (43):1453–1478, 1998.
  • [15] D.C. Drucker Andamp; W. Prager. Soil Mechanics and Plasticity Analysis of Limit Design. Quarterly Journal of Applied Mathematics, 10:157–162, 1952.
  • [16] H.A. Eschenauer Andamp; N. Olhoff. Topology Optimization of Continuum Structures: A Re- view. Applied Mechanics Review, 54:331–390, 2001.
  • [17] H.A. Eschenauer, V.V. Kobelev Andamp; A. Schumacher. Bubble Method for Topology and Shape Optimization of Structures. Structural Optimization, 8:42–51, 1994.
  • [18] E.A. Fancello. Topology optimization for minimum mass design considering local fail- ure constraints and contact boundary conditions. Structural and Multidisciplinary Opti- mization, 32(3):229–240, 2006.
  • [19] S.M. Giusti, A.A. Novotny Andamp; C. Padra. Topological sensitivity analysis of inclusion in two-dimensional linear elasticity. Engineering Analysis with Boundary Elements, 32(11):926–935, 2008.
  • [20] D. Knees, A.-M. Sändig. Regularity of elastic fields in composites. Multifield prob- lems in solid and fluid mechanics, Lecture Notes on Applied Computational Mechanics, 28:331–360, Springer, Berlin, 2006.
  • [21] C. Le, J. Norato, T. Bruns, C. Ha Andamp; D. Tortorelli. Stress-based topology optimization for continua. Structural and Multidisciplinary Optimization, 41:605–620, 2010.
  • [22] R. W. Little. Elasticity. Prentice-Hall, New Jersey, 1973.
  • [23] S. A. Nazarov Andamp; J. Sokolowski. Asymptotic analysis of shape functionals. Journal de Mathematiques Pures et Appliquees, 82(2):125–196, 2003.
  • [24] J.A. Norato, M.P. Bendsøe, R.B. Haber Andamp; D. Tortorelli. A topological derivative method for topology optimization. Structural and Multidisciplinary Optimization, 33(4-5):375– 386, 2007.
  • [25] A.A. Novotny, R.A. Feijóo, C. Padra Andamp; E. Taroco. Topological sensitivity analysis. Com- puter Methods in Applied Mechanics and Engineering, 192(7-8):803–829, 2003.
  • [26] A.A. Novotny, R.A. Feijóo, E. Taroco Andamp; C. Padra. Topological sensitivity analysis for three-diensional elasticity problem. Computer Methods in Applied Mechanics and Engi- neering, 196(41-44):4354–4364, 2007.
  • [27] J.T. Pereira, E.A. Fancello Andamp; C.S. Barcellos. Topology optimization of continuum struc- tures with material failure constraints. Structural and Multidisciplinary Optimization, 26(1-2):50–66, 2004.
  • [28] J. Rocha de Faria Andamp; A.A. Novotny. On the second order topological asymptotic expan- sion. Structural and Multidisciplinary Optimization, 39(6):50–66, 2009.
  • [29] J. Sokolowski Andamp; A. Zochowski. On the Topological Derivatives in Shape Optmization. SIAM Journal on Control and Optimization, 37(4):1251–1272, 1999.
Como citar:

Amstutz, S.; Novotny, A. A.; Neto, E. A. de Souza; "TOPOLOGICAL DERIVATIVE-BASED TOPOLOGY STRUCTURAL OPTIMIZATION UNDER DRUCKER-PRAGER-TYPE STRESS CONSTRAINTS", p. 4683-4702 . In: In Proceedings of the 10th World Congress on Computational Mechanics [= Blucher Mechanical Engineering Proceedings, v. 1, n. 1]. São Paulo: Blucher, 2014.
ISSN 2358-0828, DOI 10.5151/meceng-wccm2012-20022

últimos 30 dias | último ano | desde a publicação