Full Article - Open Access.

Idioma principal

SVET characterization of corrosion process in carbon steel 1020

Vichessi, R. B.; Calegari, F.; Marino, C. E. B.; Berton, M. A. C.;

Full Article:

The study of corrosion process on metal surfaces has been widely conducted for several years, from classical nondestructive electrochemical techniques, such as Open Circuit Potential (OCP) and Electrochemical Impedance Spectroscopy (EIS). However, these techniques allow only the analysis of the global response of the electrochemical system, whereas the regions where localized corrosion occurs (pitting, crevice, passive film rupture, etc.) are left without identification.

One of the localized electrochemical techniques, the latter of these systems, named SVET (Electrochemical Technique Vibrating Electrode), allows an improved resolution and lower minimum detectable signal in the evaluation of the corrosion phenomena. This technique stands out because it allows mapping the exact location at separated sites in the metal/electrolyte interface where the anodic and cathodic processes take place enabling the distinction of the contribution of each event.

In this study, SVET technique was used to investigate the corrosion process of carbon steel in media containing chloride. Carbon steels are ferrous alloys made of iron and carbon, widely used in engineering and industry. The SVET results showed the evolution of corrosion process in function of time on steel sample. This recent electrochemical technique allowed the analysis and differentiation of intensity of oxidation reaction in different regions of the sample.

Full Article:

Palavras-chave: SVET, carbon steel, corrosion,

Palavras-chave: ,

DOI: 10.5151/chempro-s3ie2016-01

Referências bibliográficas
  • [1] AKID, R.; GARMA, M. Scanning vibrating reference electrode technique: a calibration study to evaluate the optimum operating parameters for maximum signal detection of point source activity. Electrochimica Acta, v. 49, n. 17–18, p. 2871-2879, 2004.
  • [2] AKID, R.; MILLS, D. J. A comparison between conventional macroscopic and novel microscopic scanning electrochemical methods to evaluate galvanic corrosion. Corrosion Science, v. 43, n. 7, p. 1203-1216, 2001.
  • [3] BASTOS, A. C. A. F., M. G. AND SIMÕES, A. M. Corrosion inhibition by chromate and phosphate extracts for iron substrates studied by EIS and SVET. Corrosion Science, v. 48, n. 6, p. 1500--1512, 2006.
  • [4] BASTOS, A. C. D., S.A.S, DIAMANTINO, T.C., FERREIRA, M.G.S. Uma Introdução À Técnica SVET. Corrosão e Proteção de materiais, v. 32, n. 1, p. 50-57, 2013.
  • [5] BIERWAGEN, G. et al. Active metal-based corrosion protective coating systems for aircraft requiring no-chromate pretreatment. Progress in Organic Coatings, v. 68, n. 1–2, p. 48-61, 2010.
  • [6] CHEN, G.; PALMER, R. J.; WHITE, D. C. Instrumental analysis of microbiologically influenced corrosion. Biodegradation, v. 8, n. 3, p. 189-200, 1997.
  • [7] COELHO, L. B. et al. A SVET study of the inhibitive effects of benzotriazole and cerium chloride solely and combined on an aluminium/copper galvanic coupling model. Corrosion Science, v. 110, p. 143-156, 2016.
  • [8] CRAMER, S. D.; COVINO, B. S.; MOOSBRUGGER, C. ASM Handbook Volume 13b: Corrosion: Materials. Ohio: ASM, 2003.
  • [9] DU, X.-Q. et al. Galvanic corrosion behavior of copper/titanium galvanic couple in artificial seawater. Transactions of Nonferrous Metals Society of China, v. 24, n. 2, p. 570-581, 2014.
  • [10] FALCÓN, J. M.; BATISTA, F.F.; AOKI, I.V. Encapsulation of dodecylamine corrosion inhibitor on silica nanoparticles. Electrochimica Acta, v. 124, p. 109- 118, 2014.
  • [11] http://www.acobrasil.org.br/site/portugues/numeros/estatisticas.asp. Accessed on: 02/09/2016.
  • [12] https://www.worldsteel.org. Accessed on: 02/09/2016.
  • [13] KONG, D.-C. et al. Copper corrosion in hot and dry atmosphere environment in Turpan, China. Transactions of Nonferrous Metals Society of China, v. 26, n. 6, p. 1721-1728, 2016.
  • [14] KRAWIEC, H.; VIGNAL, V.; OLTRA, R. Use of the electrochemical microcell technique and the SVET for monitoring pitting corrosion at MnS inclusions. Electrochemistry Communications, v. 6, n. 7, p. 655-660, 2004.
  • [15] LI, S. et al. Passivation and potential fluctuation of Mg alloy AZ31B in alkaline environments. Corrosion Science, In press: August 2016.
  • [16] MORETO, J. A. et al. SVET, SKP and EIS study of the corrosion behaviour of high strength Al and Al–Li alloys used in aircraft fabrication. Corrosion Science, v. 84, p. 30-41, 2014.
  • [17] PAGOTTO, J.F. et al. Visualization of the galvanic effects at welds on carbon steel. Journal of The Brazilian Chemical Societt, v.26, n.4, p. 667-675, 2015.
  • [18] RECLOUX, I. et al. Silica mesoporous thin films as containers for benzotriazole for corrosion protection of 2024 aluminium alloys. Applied Surface Science, v. 346, p. 124-133, 2015.
  • [19] ROSSI, S. et al. Localized electrochemical techniques: Theory and practical examples in corrosion studies. Comptes Rendus Chimie, v. 11, n. 9, p. 984-994, 2008.
  • [20] SHI, W.; LYON, S. B. Investigation using localised SVET into protection at defects in epoxy coated mild steel under intermittent cathodic protection simulating inter-tidal and splash zones. Progress in Organic Coatings, In Press: May 2016.
  • [21] SOUTO, R. M. et al. Investigating corrosion processes in the micrometric range: A SVET study of the galvanic corrosion of zinc coupled with iron. Corrosion Science, v. 49, n. 12, p. 4568-4580, 2007.
  • [22] WANG, S. et al. Characterization of low alloy ferritic steel–Ni base alloy dissimilar metal weld interface by SPM techniques, SEM/EDS, TEM/EDS and SVET. Materials Characterization, v. 100, p. 50-60, 2015.
  • [23] WANG, S. et al. Characterization of low alloy ferritic steel–Ni base alloy dissimilar metal weld interface by SPM techniques, SEM/EDS, TEM/EDS and SVET. Materials Characterization, v. 100, p. 50-60, 2015.
  • [24] YAN, M.; VETTER, C. A.; GELLING, V. J. Corrosion inhibition performance of polypyrrole Al flake composite coatings for Al alloys. Corrosion Science, v. 70, p. 37-45, 2013.
Como citar:

Vichessi, R. B.; Calegari, F.; Marino, C. E. B.; Berton, M. A. C.; "SVET characterization of corrosion process in carbon steel 1020", p. 11-20 . In: Proceedings of 2nd International Seminar on Industrial Innovation in Electrochemistry . São Paulo: Blucher, 2016. São Paulo: Blucher, 2016.
ISSN 2318-4043, DOI 10.5151/chempro-s3ie2016-01

últimos 30 dias | último ano | desde a publicação