Full Article - Open Access.

Idioma principal

SURFACE OPTIMIZATION OF A SOCKET FOR A TRANSFEMORAL AMPUTEE THAT REDUCES THE STRESSES VARYING THE FRICTION COEFFICIENT

Restrepo, Vanessa ; Villarraga, Junes ; Velez, Jaime ;

Full Article:

The shear stresses and pressures in the socket-stump interface were calculated for four transfemoral amputees, using the finite element method. A dynamic explicit model was developed for the simulation of the fitting procedure of the socket and the applying of the loads corresponding to the support phase during the gait, and a constitutive multilayer hyper-elastic model was employed for the soft tissues (skin, fat and muscle) because of their large strains and displacements, and lineal isotropic models for the bone and socket. In order to determine the influence of the friction coefficient on the socket-skin interface, its value was varied from a minimum value of 0.5 to a maximum of 1.0. Then, the zones where the greatest pressures and stresses occurred were identified, where the use of a horizontal strip was proposed with a variation of the friction coefficient from 0.2 to 0.6, in order to ob-serve its effect on the obtained stresses. The strip has a width of 10 cm and is located approx-imately 2.0 cm below the ischial support of all the individuals. It was observed that the pres-sure does not change significantly when varying the friction coefficient. However, the average shear stress tends to rise when increasing the friction coefficient, and after applying the strip the average shear stress reduced up to 25%, while the pressure variation was not significant. Finally, the experimental validation of the behavior of the friction coefficient between the polypropylene and the skin was performed with a sclerometer. This experiment considered factors such as the patient’s sweat, the amount of hair and the surface texture of the polypro-pylene coating, and it proved that the surface texture of the coating must be accounted for when measuring the friction coefficient.

Full Article:

Palavras-chave: Transfemoral amputees, socket-stump interface, finiteelementanalysis, friction-coefficient, stress distribution.,

Palavras-chave:

DOI: 10.5151/meceng-wccm2012-16816

Referências bibliográficas
  • [1] Meulenbelt H. E.,Geertzen J. H., Jonkman M. F., y Dijkstra P. U.,"Determinantsofskinproblemsofthestump in lower-limbamputees", ArchPhysMedRehabil, vol. 90, no. 1, 74–81, 2009.
  • [2] «WHO | Disabilityandrehabilitation: WHO actionplan 2006-2011», WHO.[Online]. Available: http://www.who.int/disabilities/publications/action_plan/en/index.html.[Accessed: 16-abr-2012].
  • [3] Zhang M. y Roberts C., "Comparisonofcomputationalanalysiswithclinicalmeasurementofstres-sesonbelow-knee residual limb in a prosthetic socket", MedEngPhys, vol. 22, no. 9, 607–612, 2000.
  • [4] Manschot J. F. y Brakkee A. J.,"The measurementandmodellingofthemechanicalpropertieso-fhumanskin in vivo--II. The model", J Biomech, vol. 19, no. 7, 517–521, 1986.
  • [5] Ramírez J. F., "Nivel de Confort y Distribución de EsfuerzosenlaInterfaz Socket – Muñónen Am-putados Transfemorales", TesisDoctoral, Universidad Nacional de Colombia, Medellín, Colombia, 2011.
  • [6] Restrepo V., "Optimización Superficial de un Socket para Amputado Transfemoral que Dismi-nuyalosEsfuerzos Variando el Coeficiente de Fricción", Tesis de Pregrado, Universidad de Antioquia, Mdellín, 2012.
  • [7] Portnoy S.,Siev-Ner I.,Yizhar Z.,Kristal A.,Shabshin N., y GefenA., "Surgicalandmorphologicalfac-torsthataffectinternalmechanicalloads in soft tissuesofthetranstibialresiduum", Ann BiomedEng, vol. 37, no. 12, 2583–2605, 2009.
  • [8] ZhengY. P., MakA. F., yLeung A. K., "State-of-the-artmethods for geometricandbiomechanica-lassessmentsof residual limbs: a review", J Rehabil Res Dev, vol. 38, no. 5,487–504, 2001.
  • [9] Zhang M.yMakA. F., "A finiteelementanalysisoftheloadtransferbetweenanabove-knee residual limband its prosthetic socket-roles of interface frictionand distal-endboundaryconditions", IEEE Tran-sactionsonRehabilitationEngineering, vol. 4, no. 4, 337–346, 1996.
  • [10] Lee W. C. C.,Zhang M.,Jia X., y CheungJ. T. M., "Finiteelementmodelingofthecontact interface betweentrans-tibial residual limbandprosthetic socket", MedEngPhys, vol. 26, no. 8, 655–662, 2004.
  • [11] Duchemin L.,Bousson V.,Raossanaly C.,Bergot C.,Laredo J. D., SkalliW., y MittonD., "Predictio-nofmechanicalpropertiesof cortical bonebyquantitativecomputedtomography", MedEngPhys, vol. 30, no. 3, 321–328, 2008.
  • [12] Vélez J. A. y Piedrahita M., "Análisis de la influencia delporcentajedelmiembro residual enladis-tribución de esfuerzos y presionesenlainterfaz socket-muñón", Tesis de pregrado, Universidad de Antioquia, Medellín, Colombia, 2011.
  • [13] Zhang M., LordM.,Turner-Smith A. R., yRoberts V. C., "Developmentof a non-linear finiteele-mentmodellingofthebelow-kneeprosthetic socket interface", MedEngPhys, vol. 17, no. 8, 559–566, 1995.
  • [14] Zhang M.,MakA. F., y Roberts V. C., "Finiteelementmodellingof a residual lower-limb in a pros-thetic socket: a surveyofthedevelopment in thefirstdecade", MedEngPhys, vol. 20, no. 5, 360–373, 1998.
  • [15] Perry J., k S. T., y Davids J. R., “GaitAnalysis: Normal andPathologicalFunction”, JournalofPedia-tricOrthopaedics, vol. 12, no. 6, 1992.
  • [16] Zhang M., Turner-Smith A. R., Roberts V. C., yTanner A., “Frictionalactionatlower-limb/prosthetic socket interface”, MedEngPhys, vol. 18, no. 3, 207–214, 1996.
  • [17] Appoldt F. A., Bennet L., y Contin R., “TangentialPressureMeasurements in Above-KneeSuction Sockets”, SchoolofEngineeringand Science New York University. 1970.
  • [18] Williams R. B.,Porter D.,Roberts V. C., yRegan J. F., “Triaxial force transducer for investigati-ngstressesatthestump/socket interface”, MedBiolEngComput, vol. 30, no. 1, 89–96, 1992.
  • [19] Sanders J. E.,Daly C. H., y BurgessE. M., “Interface shearstressesduringambulationwith a below-kneeprostheticlimb”, J Rehabil Res Dev, vol. 29, no. 4, 1–8, 1992.
  • [20] Silver-Thorn M. B.,Steege J. W., y ChildressD. S., “A reviewofprosthetic interface stress investi-gations”, J Rehabil Res Dev, vol. 33, no. 3, 253–266, 1996.
  • [21] Colombo G.,Filippi S.,Rizzi C., y RotiniF., “A new design paradigm for the developmentofcus-tom-fit soft sockets for lowerlimbprostheses”, Computers in Industry, vol. 61, no. 6, 513–523, 2010.
  • [22] Huiskes R. y ChaoE. Y.,“A surveyoffiniteelementanalysis in orthopedicbiomechanics: thefirstde-cade”, J Biomech, vol. 16, no. 6, 385–409, 1983.
  • [23] Zachariah S. G. y SandersJ. E., “Finiteelementestimatesof interface stress in thetrans-tibialprosthesisusing gap elements are differentfromthoseusingautomatedcontact”, J Biomech, vol. 33, no. 7, 895–899, 2000.
  • [24] Lee W. C. C.,Zhang M.,Jia X., y CheungJ. T. M., “Finiteelementmodelingofthecontact interface betweentrans-tibial residual limbandprosthetic socket”, MedEngPhys, vol. 26, no. 8, 655–662, 2004.
  • [25] Agache P. G.,Monneur C.,Leveque J. L., yDe Rigal J., “Mechanicalpropertie-sandYoung’smodulusofhumanskin in vivo”, Arch. Dermatol. Res, vol. 269, no. 3, 221–232, 1980.
  • [26] Diridollou S.,Patat F.,Gens F.,Vaillant L.,Black D.,Lagarde J. M.,Gall Y., y BersonM., “In vivo mo-delofthemechanicalpropertiesofthehumanskinundersuction”, Skin Res Technol, vol. 6, no. 4, 214–221, 2000.
  • [27] Hendriks F.M., Brokken D., van Eemeren J., Oomens C.W.J., Baaijens F.P.T., y Horsten J.B.A.M., “A numerical-experimental methodtocharacterizethe non-linear mechanicalbehaviourofhumanskin”, Skin Res Technol, vol. 9, 274–283, 2003.
  • [28] Pailler-Mattei C.,Bec S., yZahouani H., “In vivo measurementsoftheelasticmechanicalpropertie-sofhumanskinbyindentationtests”, MedEngPhys, vol. 30, no. 5,599–606, 2008.
  • [29] Pulido H. G.,Salazar R. de la V.,Carrasco A. C., ySánchez M. O., “Análisis y diseño de experimen-tos”. Mc Graw-Hill, 2008.
Como citar:

Restrepo, Vanessa; Villarraga, Junes; Velez, Jaime; "SURFACE OPTIMIZATION OF A SOCKET FOR A TRANSFEMORAL AMPUTEE THAT REDUCES THE STRESSES VARYING THE FRICTION COEFFICIENT", p. 485-502 . In: In Proceedings of the 10th World Congress on Computational Mechanics [= Blucher Mechanical Engineering Proceedings, v. 1, n. 1]. São Paulo: Blucher, 2014.
ISSN 2358-0828, DOI 10.5151/meceng-wccm2012-16816

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações