Fevereiro 2015 vol. 1 num. 2 - XX Congresso Brasileiro de Engenharia Química

Artigo - Open Access.

Idioma principal




Large amount of passion fruit seeds are misspent after juice production.Heat and light can cause loss or reduction of seed oil antioxidant and antitumor activities.Thus, co-precipitation with polymers by Supercritical AntiSolvent process (SAS) may beused to preserve important compounds. This work aimed to study the phase behavior ofthe systems 1) CO2+ dichloromethane+ seed oil and 2) CO2+ dichloromethane+ seed oil+PLGA (poly(lactic-co-glycolic) acid), to determine the operational conditions to beemployed on future SAS assays. The static synthetic method was applied using differentCO2 compositions (60 - 98.8 wt %) and temperatures (35 and 45 °C). Liquid-vapor,liquid-liquid and liquid-liquid-vapor phase transitions were observed. Conditionssuggested to proceed the SAS encapsulation study are: 35 °C to preserve extract quality,CO2 concentration between 92.5 and 97.0 %, ensuring its action as anti-solvent, andpressure above 75 bar to guarantee a single phase equilibrium.



DOI: 10.5151/chemeng-cobeq2014-0476-25304-173285

Referências bibliográficas
  • [1] ADAMI, R.; REVERCHON, E.; JARVENPAA, E.; HUOPALAHTI, R. Supercritical AntiSolventmicronization of nalmefene HCl on laboratory and pilot scale. Powder Techn. v. 182, p. 105-112,2008.
  • [2] BENDER, J. P.; FEITEIN, M.; MAZUTTI, M.A.; FRANCESCHI, E.; CORAZZA, M. L.;OLIVEIRA, J. V. Phase behaviour of the ternary system {poly(e-caprolactone) + carbon dioxide+ dichloromethane}. J. Chem. Thermodynamics, v. 42, p. 229–233, 2010.
  • [3] DIEFENBACHER, A.; TÜRK, M. Phase equilibria of organic solid solutes and supercriticalfluids with respect to the RESS process. J. Supercritical Fluids, v. 22, p. 175–184, 2002.
  • [4] Área temática: Engenharia das Separações e Termodinâmica 6FERREIRA, B.S.; ALMEIDA, C.G.; FAZA, L.P.; ALMEIDA, A.; DINIZ, C.G.; SILVA, V.L.;GRAZUL, R.M.; LE HYARIC, M. Comparative Properties of Amazonian Oils Obtained byDifferent Extraction Methods. Molecules, v. 16, p. 5875-5885, 2011.
  • [5] HIGUERA-CIAPARA, I.; FELIX-VALENZUELA, L.; GOYCOOLEA, F. M.; ARGÜELLES-MONAL, W. Microencapsulation of astaxanthin in a chitosan matrix. Carbohydrate Polym., v.56, p. 41-45, 2004.
  • [6] HILL, L. E.; TAYLOR, M.; GOMES, C. Antimicrobial Efficacy of Poly(DL-lactide-co-glycolide) (PLGA) Nanoparticles with Entrapped Cinnamon Bark Extract against Listeriamonocytogenes and Salmonella typhimurium. J. of Food Science, v. 78 (4), N626-N632, 2013.
  • [7] JUNG, J.; PERRUT, M. Particle design using supercritical fluids: Literature and patent survey. J.Supercr. Fluids. v. 20, p. 179-219, 2001.
  • [8] KALOGIANNIS, C.G.; PANAYIOTOU, C.G. Bubble and Cloud Points of the System Poly(L-lactic acid) + Carbon Dioxide + Dichloromethane Bubble and Cloud Points of the SystemPoly(L-lactic acid) + Carbon Dioxide + Dichloromethane. J. Chem. Eng. Data, v. 50, p. 1442–1447, 2005.
  • [9] KIM, E. J.; PARK, H.; PARK, S. Y.; JUN, J. G.; PARK, J. H. Y. The grape componentpiceatannol induces apoptosis in DU145 human prostate cancer cells via the activation ofextrinsic and intrinsic pathways. J. Med. Food, v. 12, p. 943–951, 200
  • [10] KUO, P. L.; HSU, Y. L. The grape and wine constituent piceatannol inhibits proliferation ofhuman bladder cancer cells via blocking cell cycle progression and inducing Fas/membranebound Fas ligand-mediated apoptotic pathway. Mol. Nutr. Food Res., v. 52, p. 408–418, 2008.
  • [11] LEE, Y. M.; LIM, D. Y.; CHO, H. J.; SEON, M. R.; KIM, J.-K.; LEE, B.-Y.; PARK, J. H. Y.Piceatannol, a natural stilbene from grapes, induces G1 cell cycle arrest in androgen-insensitiveDU145 human prostate cancer cells via the inhibition of CDK activity. Cancer Letters, v. 285, p.166–173, 2009.
  • [12] MALACRIDA, C.R.; JORGE, N. Yellow Passion Fruit Seed Oil (Passiflora edulis f. flavicarpa):Physical and Chemical Characteristics. Braz. Archives of Biololy and Tech., v. 55, p. 127-134,20
  • [13] OLIVEIRA, J.V.; DARIVA, C.; PINTO, J.C. High-pressure phase equilibria for polypropylene-hydrocarbon systems. Indust. Eng. Chem. Res., v. 39 (12), p. 4627-4633, 2000.
  • [14] PIOMBO, G.; BAROUH, N.; BAREA, B.; BOULANGER, R.; BRAT, P.; PINA, M.;VILLENEUVE, P. Characterization of the seed oils from kiwi (Actinidia chinensis), passion fruit(Passiflora edulis) and guava (Psidium guajava). Oleagineux Corps Gras Lipides, v. 13 (2-3), p.195-199, 2006.
  • [15] REVERCHON, E.; DELLA PORTA, G.; FALIVENE, M.G. Process parameters and morphologyin amoxicillin micro and submicro particles generation by supercritical antisolvent precipitation.J. Supercrit. Fluids, v. 17, p. 239–248, 2000.
  • [16] SANO, S.; SUGIYAMA, K.; ITO, T.; KATANO, Y.; ISHIHATA, A. Identification of the StrongÁrea temática: Engenharia das Separações e Termodinâmica 7Vasorelaxing Substance Scirpusin B, a Dimer of Piceatannol, from Passion Fruit (Passifloraedulis) Seeds, J. Agric. Food Chem., v. 59, p. 6209-6213, 2011.
  • [17] VAN KONYNENBURG, P.H., SCOTT, R.L. Critical lines and phase equilibria in binary Vander Waals mixtures. Philosop. Transactions Royal Soc. of London, v. 298, p. 495-540, 1980.
  • [18] VON DER LINDEN, U. M. The passion fruit market – is it controllable? Fruit Processing,Jan/Feb 2007.
Como citar:

OLIVEIRA, D. A.; ANGONESE, M.; COMIM, S. R.; FERREIRA, S. R. S.; "PHASE BEHAVIOR OF (CO2 + DICHLOROMETHANE +PASSION FRUIT SEED OIL) AND (CO2 +DICHLOROMETHANE + PASSION FRUIT SEED OIL + PLGA)SYSTEMS", p. 14918-14925 . In: Anais do XX Congresso Brasileiro de Engenharia Química - COBEQ 2014 [= Blucher Chemical Engineering Proceedings, v.1, n.2]. São Paulo: Blucher, 2015.
ISSN 2359-1757, DOI 10.5151/chemeng-cobeq2014-0476-25304-173285

últimos 30 dias | último ano | desde a publicação