Fevereiro 2015 vol. 1 num. 2 - XX Congresso Brasileiro de Engenharia Química

Artigo - Open Access.

Idioma principal




Neosartorya fischeri is a heat resistant fungi able to grow in fruit juice and a potential mycotoxins and pectinolytic enzymes producer. The temperature is one of the most important factors affecting the fungal growth kinetics during food distribution and storage. The objective of this study was predicting N. fischeri growth under non-isothermal conditions and validating the predictions with experimental data. The growth curves of N. fischeri were described by the Baranyi and Roberts model, and the dependence of the model parameters with the temperature was described with the square root and logarithmic models. The prediction of N. fischeri growth was performed for two different non-isothermal profiles. In the first profile, temperature changed between 10 and 20 ºC, every 24 hours; in the second profile temperature of incubation changed from 20 ºC to 30 °C after 170 hours, keeping this temperature until the fungal diameter reached the entire plate. The results showed that the mathematical model was able to predict the growth of N. fischeri for the two experiments performed, which was confirmed by the statistical indexes bias and accuracy factors, R



DOI: 10.5151/chemeng-cobeq2014-0572-24887-169886

Referências bibliográficas
  • [1] BARANYI, J., ROBERTS, T.A. (1994). A dynamic approach to predicting bacterial growth in food. Int. J. of Food Microbiol., 23, 277-294.
  • [2] CORRADINI, M.; PELEG, M. (2005). Estimating non-isothermal bacterial growth in foods from isothermal experimental data. J. of Applied Microbiol., 99 (1), 187-200.
  • [3] Área temática: Engenharia e Tecnologia de Alimentos 6GIANNUZZI, L., PINOTTI, A., ZARITZKY, N. (1998). Mathematical modeling of microbial growth in packaged refrigerated beef at different temperature. Int. J. of Food Microbiol., 39, 101-110.
  • [4] GIANNAKOUROU, M. C., KOUTSOUMANIS, K., NYCHAS, G. J. E., TAOUKIS, P. S. (2005). Field evaluation of the application of time temperature integrators for monitoring fish quality in the chill chain. Int. J. of Food Microbiol., 102, 323-336.
  • [5] GOSPAVIC, R., KREYENSHIMIDT, J., BRUCKNER, S., POPOV, V., HAQUE, N. (2008) Mathematical modeling for predicting the growth of Pseudomonas spp. in poultry under variable temperature condictions. Int. J. of Food Microbiol., 127, 290-297.
  • [6] GOUGOULI, M., ANGELIDIS, A. S., KOUTSOUMANIS, K. (2008). A study on the kinetic behavior of Listeria monocytogenes in ice cream stored under static and dynamic chilling and freezing conditions. Journal of Dairy Science 91, 523–530.
  • [7] GOUGOULI, M.; KOUTSOUMANIS, K. (2010). Modelling growth of Penicillium expansum and Aspergillus niger at constant and fluctuating temperature conditions. Int. J. of Food Microbiol., 140 (2-3), 254-262.
  • [8] HUANG, L. (2003). Estimation of growth of Clostridium perfringens in cooked beef under fluctuating temperature conditions. Food Microbiology, 20, 549-559.
  • [9] KOUTSOUMANIS, K. (2001). Predictive modeling of the shelf life of fish under non-isothermal conditions. Applied and Environmental Microbiol., 67 (4), 1821-182
  • [10] KOUTSOUMANIS, K., A. STAMATIOU, P. SKANDAMIS, G.J. (2006). Development of the microbial model for the combined effect of temperature and pH on spoilage of ground meat, and validation of the model under dynamic temperature conditions. Applied and Environmental Microbiology., 72, 124-134.
  • [11] LAGUERRE, O., DERENS, E., PALAGOS, B. (2002). Study of domestic refrigerator temperature and analysis of factors affecting temperature: a French survey. International Journal of Refrigeration 25, 653–659.
  • [12] LONGHI, D. A., DALCANTON, F., ARAGÃO, G. M. F., CARCIOFI, B. A. M., LAURINDO, J. B. (2013) Assessing the prediction ability of different mathematical models for the growth of Lactobacillus plantarum under non-isothermal conditions. J Theor Biol, 335, 88–96.
  • [13] MATARAGAS, M., DROSINOS, E. H., VAIDANIS, A., METAXOPOULOS, I. (2006). Development of a predictive model for spoilage of cooked cured meat products and its validation under constant and dynamic temperature storage conditions. J. of Food Science, 71, 157-167.
  • [14] MELLEFONT, L. A., ROSS, T. (2003). The effect of abrupt shifts in temperature on the lag phase duration of Escherichia coli and Klebsiella oxytoca. Int. J. of Food Microbiol., 83, 295-305.
  • [15] PELEG, M. Advanced Quantitative Microbiology for Foods and Biosystems. Models for Predicting Growth and Inactivation. CRS Series in Contemporary Food Science. Taylor Andamp; Francis Group. New York, USA, 2006.
  • [16] ROSS, T. (1996). Indices for performance evaluation of predictive models in food microbiology. Journal of Applied Bacteriology, 81, 501-508.
  • [17] SALOMÃO, B. C. M. (2002) Isolamento, identificação e estudo da resistência térmica de fungos filamentosos termorresistentes em produtos de frutas. Master´s Dissertation in Food Engineering, Universidade Federal de Santa Catarina (UFSC), Florianópolis SC Brazil. Área temática: Engenharia e Tecnologia de Alimentos 7SANT’ANA, A. S., ROSENTHAL, A., MASSAGUER, P.R. (2009). Heat resistance and effects of continuous pasteurization on the inactivation of Byssochlamys fulva ascospores in clarified apple juice. J. of Applied Microbiol. 107, 197–209.
  • [18] SILVA, P. R. S., MARCZAK, L. D. F., TESSARO, I. C. (2013). Integrating a kinetic microbial model with a heat transfer model to predict B. fulva growth in refrigerated papaya pulp. J. of Food Engineering. 118 (3), 279-288.
  • [19] SMITH-SIMPSON, S., CORRADINI, M. G., NORMAND, M. D., PELEG, M., SCHAFFNER, D. W. (2007). Estimating microbial growth parameters from non-isothermal data: A case study with Clostridium perfringens. Int. J. of Food Microbiol., 118, 294-303.
  • [20] TREMARIN, A. (2013) Modelagem matemática do crescimento de Byssochlamys fulva e Neosarthorya fischeri em suco de maçã solidificado sob condições isotérmicas e não-isotérmicas. Tese de Doutorado em Engenharia de Alimentos, Universidade Federal de Santa Catarina (UFSC), Florianópolis/SC/Brasil. VAN IMPE, J.F., BART, M.N., SCHELLEKENS, M.; MARTENS, T., BAERDEMAEKER, J.A. (1995). Predictive microbiology in a dynamic environment: a system theory approach. Int. J. of Food Microbiol., 25, 227-249.
  • [21] VELUGOTI, P. R., BOHRA, L.K., JUNEJA, V. K., HUANG, L., WESSELING, A. L., SUBBIAH, J., THIPPAREDDI, H. (2010). Dynamic model for predicting growth of Salmonella spp. in ground sterile pork. Food Microbiology in press, 1-8.
  • [22] WHITING, R., BUCHANAN, R. (1993). A classification of models in predictive microbiology - reply. Food Microbiology, 10, 175-177.
  • [23] ZWIETERING, M. H., JONGEBURGER, I., ROMBOUTS, F. M., RIET, K. V. (1990). Modeling of bacterial growth curve. Applied and Environmental Microbiology, 56, 1875-1881.
  • [24] ZWIETERING, M. H.; DE WIT, J.C.; CUPPERS, H.G.A.M.; VAN’T RIET, K., (1994). Modeling of bacterial-growth with shifts in temperature. Applied and Environmental Microbiology, 60 (1), 204-213.
Como citar:

TREMARIN, A.; LONGHI, D. A.; SALOMÃO, B. C. M.; ARAGÃO, G. M. F.; "MATHEMATICAL MODELING FOR Neosartorya fischeri GROWTH UNDER NON-ISOTHERMAL CONDITIONS", p. 3717-3724 . In: Anais do XX Congresso Brasileiro de Engenharia Química - COBEQ 2014 [= Blucher Chemical Engineering Proceedings, v.1, n.2]. São Paulo: Blucher, 2015.
ISSN 2359-1757, DOI 10.5151/chemeng-cobeq2014-0572-24887-169886

últimos 30 dias | último ano | desde a publicação