Fevereiro 2015 vol. 1 num. 2 - XX Congresso Brasileiro de Engenharia Química

Artigo - Open Access.

Idioma principal


LIMA, L. K. S.; BENTO, C. E.; SILVA, M. G. C.; VIEIRA, M. G. A.;


Adsorption process is an efficient alternative in metal ions removal. Many materials can be used in this process; among them, we can cite biological materials such as aquatic macrophytes. The macrophytes have shown a high percentage of metal ions removal and they have an advantage of being low cost and have the possibility of growing. In view of this, the aim of this work is evaluate lead removal by Salvinia natans in dynamic system. Essays were carried out in a fixed bed column for different flow rates. The result showed the higher amount of lead removed from the column was 0.152 mmo.g



DOI: 10.5151/chemeng-cobeq2014-1996-16493-145673

Referências bibliográficas
  • [1] ALMEIDA NETO, A. F.; VIEIRA, M. G. A.; SILVA, M. G. C., Cu(II) Adsorption on Modified Bentonitic Clays: Different Isotherm Behaviors in Static and Dynamic Systems, Mater. Res. v.15, p.114-124, 2012.
  • [2] BANERJEE, G.; SARKER, S. The role of Salvinia rotundifolia in scavenging aquatic Pb (II) pollution: a case study. Bioproc. Engr. v. 17, n. 5, p. 295-260, 1997.
  • [3] BENHIMA, H.; CHIBAN, M.; SINAN, F.; SETA, P.; PERSIN, M. Removal of lead and cadmium ions from aqueous solution by adsorption onto micro-particles of dry plants. Colloids and Surfaces B: Biointerfaces. v. 61, p. 10–16, 2008.
  • [4] GALINDO, L. S. G.; ALMEIDA NETO, A. F.; SILVA, M. G. C.; VIEIRA, M. G. A., Removal of Cadmium(II) and Lead(II) Ions from Aqueous Phase on Sodic Bentonite, Mater. Res. v.16, p.515-527, 2013.
  • [5] GEANKOPLIS, C. J. Transport Process and Unit Operations. 3 ed. USA: PTR Practice Hall, 1993.
  • [6] HASSANEIN, T. F.; KOUMANOVA, B., evaluation of adsorption potential of the agricultural waste wheat straw for basic yellow 21, J. Univ. Chem. Technol. Metall. v. 45, p. 407-414, 2010.
  • [7] KHELLAF, N.; ZERDAOUI, M. Growth, photosynthesis and respiratory response to copper in Lemna minor: a potential use of duckweed in biomonitoring. Iranian J. Environ. Health Sci. Eng. v. 7, n. 2, p. 299-306, 2010.
  • [8] LEE, S.M.; DAVIS, A.P., Removal of cu(II) and cd(II) from aqueous solution by seafood processing waste sludge. Water Res., v.35, p.534–540, 2001.
  • [9] LIMA, L. K. S.; KLEINÜBING, S. J.; SILVA, E. A.; SILVA, M. G. C., Removal of chromium from wastewater using macrophyte Lemna minor as biosorbent. Chem. Eng. Trans. v.25, p.303-308, 2011.
  • [10] LIMA, L. K. S; PELOSI, B. T.; SILVA, M. G. C.; VIEIRA, M. G. A., Lead and Chromium Biosorption by Pistia stratiotes Biomass, Chem. Eng. Trans. v.32, p.1045-1050, 2013.
  • [11] MAINE, M., DUARTE, M., SUNÉ, N., 2001. Cadmium uptake by floating macrophytes. Water Res. v. 35, p. 2629–2634, 2001.
  • [12] Área temática: Fenômenos de Transporte e Sistemas Particulados 7MATOS, M. G. N.; DININZ, V. G.; ABREU, C. A. M.; KNOECHELMANN, A.; SILVA, V. L., Bioadsorption and ion exchange of Cr3+ and Pb2+ solutions with algae. Adsorption. v.15, P.75–80, 2009.
  • [13] NGAH W. S. W., KAMARI A., FATINATHAN S., NG P. W. Adsorption of chromium from aqueous solution using chitosan beads. Adsorption. v. 12, p. 249-257, 2006.
  • [14] PHETSOMBAT, S.; KRUATRACHUE, M.,; POKETHITIYOOK, P.; UPATHAM, S. Toxicity and bioaccumulation of cadmium and lead in Salvinia cucullata. J. Environ. Biol. v. 27, n. 4, p. 645-652, 2006.
  • [15] RAHMAN, M. A.; HASEGAWA, H.; UEDA, K; MAKI, T.; RAHMAN, M. M. Influence of phosphate and iron ions in selective uptake of arsenic species by water fern (Salvinia natans L.). Chemical Engineering Journal. v. 145, n. 2, p. 179–184. 2008.
  • [16] RAKHSHAEE, R.; GIAHI, M.; POURAHMAD, A. Studying effect of cell wall''s carboxyl-carboxylate ratio change of Lemna minor to remove heavy metals from aqueous solution. J. Hazard. Mater. v. 163, n. 1, p. 165-173, 2009.
  • [17] SAYGIDEGER, S.; GULNAZ, O.; ISTIFLI, E. S.; YUCEL, N. Adsorption of Cd(II), Cu(II) and Ni(II) ions by Lemna minor L.: Effect of physicochemical environment. J. Hazard. Mater. v. 126, p. 96-104, 2005.
  • [18] SINGHA, S.; SARKA, U.; MONDAL, S.; SAHA, S., Transient behavior of a packed column of Eichhornia crassipes stem for the removal of hexavalent chromium. Desalination, v. 297, p. 48–58, 2012.
  • [19] SCHNEIDER, I. A. H.; RUBIO, J. Sorption of heavy metal ions by the nonliving biomass of freshwater macrophytes. Environ. Sci. Technol. v. 33, p. 2213-2217, 1999.
  • [20] SHARMA, I.; GOYAL, D., 2010, Adsorption kinetics: bioremoval of trivalent chromium from tannery effluent by Aspergillus sp. Biomass. Res. J. Environ. Sci. v. 4, p. 1-12, 2010.
  • [21] TARLEY, C. R. T.; ARRUDA, M. A. Z. Biosorption of heavy metals using rice milling byproducts. Characterization and application for removal of metals from aqueous effluents. Chemosphere. v. 54, p. 987–995, 2004.
  • [22] YANG, L.; CHEN, J. P. Biosorption of hexavalent chromium onto raw and chemically modified Sargassum sp., Bioresour. Technol. 99(2), 297-307, 2008.
  • [23] YANG, J.; VOLESKY, B. Biosorption of uranium on Sargassum biomass. Water Res. v. 33, p. 3357-3363, 1999.
Como citar:

LIMA, L. K. S.; BENTO, C. E.; SILVA, M. G. C.; VIEIRA, M. G. A.; "FIXED BED BIOSORPTION USING AQUATIC MACROPHYTE IN LEAD REMOVAL", p. 6425-6432 . In: Anais do XX Congresso Brasileiro de Engenharia Química - COBEQ 2014 [= Blucher Chemical Engineering Proceedings, v.1, n.2]. São Paulo: Blucher, 2015.
ISSN 2359-1757, DOI 10.5151/chemeng-cobeq2014-1996-16493-145673

últimos 30 dias | último ano | desde a publicação