Full Article - Open Access.

Idioma principal

EXPERIMENTAL INVESTIGATIONS AND VALIDATION OF A NEW MATERIAL MODEL DEVELOPED FOR MANSORY BRICKS

Linse, T. ; Gebbeken, N. ; Araújo, T. ; Silva, R. M. ;

Full Article:

This paper presents static and dynamic material tests conducted for different types of bricks. Based on the results of these experimental investigations, a new material model for masonry bricks has been developed. This material model, which is suitable for a detailed micro-model approach, considers the dynamic increase of the material strength and the degradation of the material properties due to fracture and material damage. During this project a material model for mortar has been developed also, but it will not be shown here because of lack of space. The material models for the bricks and the mortar have been implemented in ANSYS AUTODYN and can be used to examine the complex material and structural behavior of mansory walls under dynamic loadings (e.g. explosions, earthquakes). In this paper, the material model develped for bricks and its validation for static tensile and compression tests will be presented.

Full Article:

Palavras-chave: Mansory, bricks, experimental investigations, static and dynamic material model, detailed micro-model,

Palavras-chave:

DOI: 10.5151/meceng-wccm2012-18188

Referências bibliográficas
  • [1] ANSYS AUTODYN User’s Manual. ANSYS, Inc. Mechanical APDL Product Launcher Release 13.0, 2010.
  • [2] Benson, D. J. “Computational methods in Lagrangian and Eulerian hydrocodes”. Computer Methods in Applied Mechanics and Engineering, 99: p. 235-394, 199
  • [3] Bierwirth, H. “Dreiachsiale Druckversuche an Mörtelproben aus Lagerfugen von Mauerwerk”. Dissertation, Technische Universität München, Deutschland 1995.
  • [4] Bischoff, P. H., Perry, S. H. “Impact Behavior of Plain Concrete Loaded in Uniaxial Compression”. Journal of Engineering Mechanics, June (6): p. 685-693, 1995.
  • [5] Brameshuber, W., Graubohm, M., Schmidt, U. “Festigkeitseigenschaften von Mauerwerk”, Mauerwerkskalender 2006 – Teil 4: Scherfestigkeit, Kapitel A IV, p. 193- 226. Ernst Andamp; Sohn Verlag, 2006.
  • [6] Gebbeken, N., Hartmann, T. “A new Methodology for the Assessment of the EoS Data of Concrete. International Journal of Protective Structures, Vol 1, No 3, Multi-Science Publishing Co Ltd. UK, ISSN 2041-4196, 2010, p. 299-317
  • [7] Gebbeken, N., Linse, T., Araújo, T. “Modeling Masonry under dynamic loadings, material models, numerical simulations”. 9th International Conference on Shock Andamp; Impact Loads on Structures. Fukuoka, Japan. Nov. 16 – 18, 2011.
  • [8] Hao, H., Tarasov, B. G. “Experimental study of dynamic material properties of clay brick and mortar at different strain rates”. Australian Journal of Structural Engineering, 8: 117- 131, 200
  • [9] Hartmann, T., Pietzsch, A., Gebbeken, N. “A Hydrocode Material Model for Concrete”.International Journal of Protective Structures, Multi-Science Publishing Co Ltd. UK, ISSN 2041-4196, Volume 1, Number 4, Dec 2010, p. 443-468
  • [10] Johnson, G. R., Holmquist, T. J. “An improved computational constitutive model for brittle materials”. High-pressure science and technology 1993, 309: p. 981-984, 1994.
  • [11] Linse, Tobias: “Materialmodelle für Mörtel und Ziegel für die diskrete Modellierung von Mauerwerk unter dynamischen Einwirkungen”. Dissertation, Universität der Bundeswehr München, publication planned in 2012.
  • [12] Lourenço, P. J. B. B. “Computational Strategies for Masonry Structures”. Dissertation, Technische Universiteit Delft, 1996.
  • [13] Noh, W. F., Woodward, P. “SLIC (Simple Line Interface Calculation)”, Lecture Notes in Physics 59, Spring-Verlag, Berlin (1976).
  • [14] Oliveira, D. V. de C. “Experimental and numerical analysis of blocky masonry structures under cyclic loading”. Dissertation, Universidade do Minho, Portugal, 2003.
  • [15] Pluijm, R. van der: “Material Properties of Masonry and its Comportments under Tension and Shear”. In: 6th Canadian Masonry Symposium, University of Saskatchewan, 1992.
  • [16] Riedel, W. “Beton unter dynamischen Lasten - Meso- und makromechanische Modelle und ihre Parameter”. Dissertation, Fakultät für Bauingenieur- und Vermessungswesen, Universität der Bundeswehr München, Deutschland 2000.
  • [17] Sarangapani, G., Reddy, B. V. V., Jagadish, K. S. “Brick-Mortar Bond and Masonry Compressive Strength”. Journal of materials in civil engineering, 17(2): p 229-237, 2005.
  • [18] Schickert, G. “Formfaktoren der Betondruckfestigkeit”. Die Bautechnik, Band 2, S. 52- 57, Verlag Ernst Andamp; Sohn, 1981
  • [19] Schubert, P. “Eigenschaftswerte von Mauerwerk, Mauersteinen und Mauermörtel”. Mauerwerk Kalender 2005, 30: p. 127-130, Verlag Ernst Andamp; Sohn, 2005.
  • [20] Schubert, P. “Eigenschaftswerte von Mauerwerk, Mauersteinen und Mauermörtel”. Mauerwerk Kalender 2007, p. 3-24. Verlag Ernst Andamp; Sohn, 2007.
  • [21] Schuler, H., Mayrhofer, C., Thoma, K. “Spall experiments for the measurement of the tensile strength and fracture energy of concrete at high strain rates”. International Journal of Impact Engineering, 32(10): p. 1635-1650, 2006.
  • [22] Speck, K. “Beton unter mehraxialer Beanspruchung - Ein Materialgesetz für Hochleistungsbetone unter Kurzzeitbelastung”. Dissertation, Fakultät für Bauingenieurwesen, Technische Universität Dresden, Deutschland, Oktober 2007.
  • [23] Thomée, B. “Physikalisch nichtlineare Berechnung von Stahlfaserbetonkonstruktionen”. Dissertation, Technische Universität München, Deutschland, 2005.
  • [24] Vermeltfoort, A. Th., Pluijm, R. van der. “Strength and deformation properties of masonry to be used in computer calculations”. In: Proc. of the 9th IBMac (International Brick and Masonry Conference), p. 244-251, 1991.
  • [25] Willam, K. J., Warnke, E. P. “Constitutive Model for the Triaxial Behavior of Concrete”. In: IVBH, IABSE AIPC (Eds): Concrete Structures subjected to triaxial stresses, 17th - 19th May, 1974, ISMES - Bergamo Italy, 1974.
Como citar:

Linse, T.; Gebbeken, N.; Araújo, T.; Silva, R. M.; "EXPERIMENTAL INVESTIGATIONS AND VALIDATION OF A NEW MATERIAL MODEL DEVELOPED FOR MANSORY BRICKS", p. 909-931 . In: In Proceedings of the 10th World Congress on Computational Mechanics [= Blucher Mechanical Engineering Proceedings, v. 1, n. 1]. São Paulo: Blucher, 2014.
ISSN 2358-0828, DOI 10.5151/meceng-wccm2012-18188

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações