Full Article - Open Access.

Idioma principal

Evaluation of electrical conductivity and density of 8 mol% yttria-stabilized zirconia produced by Spark Plasma Sintering

Polla, P. T. B.; Valentini, M. I.; Junior, N. V.; Berton, M. A. C.; Conceição, L. da;

Full Article:

In this work, 8 mol% yttria-stabilized zirconia (8%YSZ) containing micro or nanoparticles were manufactured by Spark Plasma Sintering technique, in order to improve sample densification and control grain growth. The electrical conductivity of dense 8%YSZ pellets sintered was investigated by electrochemical impedance spectroscopy (EIS). Preliminary results showed for samples produced from both micro and nanoparticle sintered at 1000 °C for 5 min, the relative density is approximately 98 %, while for the others samples sintered at 1200 °C the density is above 99 %. These densities are higher in comparison to the same composite sintered by conventional method. The electrical measurements were carried out at 500 °C in air and the best results were obtained for samples with nano particle size in comparison with micro granulometry. The SPS process allows using lower temperatures and shorter times to produce materials with high density and controlled grain growth.

Full Article:

Palavras-chave: 8%YSZ, Spark Plasma Sintering, relative density, ionic conductor, solid electrolyte,

Palavras-chave: ,

DOI: 10.5151/chempro-s3ie2016-11

Referências bibliográficas
  • [1] A. B. Stambouli, E. Traversa, Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy, Renewable and Sustainable Energy Reviews, 2002, vol. 6, n. 5, 433-455.
  • [2] D. Z. Florio, F. C. Fonseca, E. N. S. Muccillo, R. Muccillo, Materiais Cerâmicos para Células a Combustível, Cerâmica, 2004, vol. 50, n. 316, 275-290.
  • [3] L. Conceição, Catodos a Base de Manganita de Lantânio: Avaliação de metodologias de síntese e caracterização, 2011, 1 ed., São Paulo, Blucher
  • [4] A. Atkinson, S. Barnett, R. J. Gorte, J. T. S. Irvine, A. J. McEvoy, M. Mogensen, S. C. Singhal, J. Vohs, Advanced anodes for high-temperature fuel cells, Nature Mater, 2004, vol. 3, n.1, 17-27.
  • [5] M. E. Medeiros, R. S. Amado, L. F. B. Malta, F. M. S. Garrido, Pilhas a combustível de óxido sólido: materiais, componentes e configurações, Química Nova, 2007, vol. 30, n.1, 189-197.
  • [6] A. Weber, E. Ivers-Tiffée, Materials and Concepts for solid oxide fuel cells (SOFCs) in stationary and mobile applications, Journal of Power Sources, 2004, vol. 127, n.1-2, 273-283.
  • [7] M. Gaudon, E. Djurado, N. H. Menzler, Morphology and sintering behavior of yttria stabilized zirconia (8-YSZ) powders synthesized by spray pyrolysis, Ceramics International, 2004, vol. 30, n. 8, 2295-2303.
  • [8] J. Seydel, M. Becker, E. Ivers-Tiffée, H. Hahn, Granular nanocrystalline zirconia electrolyte layers deposited on porous SOFC cathode substrates, Materials Science Engineering: B, 2009, vol. 164, 60-64.
  • [9] R. M. Batista, E. N. S. Muccillo, Densification and grain growth of 8YSZ containing NiO”, Ceramics International, 2011, vol. 37, n. 3, 1047–1053.
  • [10] W. D. Kingery, Introduction to ceramics, 1960, 2 ed., New York, John Wiley.
  • [11] B. J. Kellet, F. F. Lange, Thermodynamics of densification: I, sintering of simple particle arrays, equilibrium configurations, pore stability, and shrinkage, Journal of the American Ceramic Society, 1989, vol. 72, n. 5, 725-734.
  • [12] R. Muccillo, M. Kleitz, E. N. S. Muccillo, Flash Grain Welding in Yttria Stabilized Zirconia, Journal of The European Ceramic Society, 2011, vol. 31, n. 8, 1517-1521.
  • [13] I. W. Chen, X. W. Wang, Sintering dense nanocrystalline ceramics without final-stage grain growth, Nature, 2000, vol. 404, n. 9, 168-171.
  • [14] M. Okamoto, Y. Akimune, K. Furuya, M. Hatano, M. Yamanaka, M. Uchiyama, Phase transition and electrical conductivity of scandia-stabilized zirconia prepared by spark plasma sintering process, Solid State Ionics, 2005, vol. 176, n. 7-8, 675-680.
  • [15] U. A. Tamburini, J. E. Garay, Z. A. Munir, Fast low-temperature consolidation of bulk nanometric ceramic materials, Scripta Materialia, 2006, vol. 54, n. 5, 823-828.
  • [16] I. Sulima, Consolidation of AISI316L Austenitic Steel - TiB2 Composites by SPS and HP-HT Technology, Sintering Techniques of Materials, In: Sintering Techniques of Materials, 2015, InTech, 125-153.-
  • [17] V. Trombini, E. M. J. A. Pallone, Z. A. Munir, R. Tomasi, Spark plasma sintering (SPS) de nanocompósitos de Al2O3-ZrO2, Cerâmica, 2007, vol. 53, n. 325, 62-67.
  • [18] K. D. Robles Arellano, L. Bichler, K. Akkiraju, R. Fong, K. Mondal, Densification behavior of Spark Plasma Sintered La2O3-YSZ ceramics composites, Ceramics International, 2014, vol. 40, n. 1, 715-722.
  • [19] K. Rajeswari, M. Buchi Suresh, U. S. Hareesh, Y. Srinivasa Rao, Dibakar Das, Roy Johnson, Studies on ionic conductivity of stabilized zirconia ceramics (8YSZ) densified through conventional and non-conventional sintering methodologies, 2011, vol. 37, n. 8, 3557-3564.
  • [20] K. Rajeswari, M. Buchi Suresh, Dibyendu Chakravarty, Dibakar Das, Roy Johnson, Effect of nano-grain size on the ionic conductivity of spark plasma sintered 8YSZ electrolyte, International Journal of Hydrogen Energy, 2012, vol. 37, n. 1, 511-517.
  • [21] K. A. Khor, X. J. Chen, S. H. Chan, L. G. Yu, Microstructure-property modifications in plasma sprayed 20 wt.% yttria stabilized zirconia electrolyte by spark plasma sintering (SPS) technique, Materials Science and Engineering A, 2004, vol. 366, n. 1, 120-126.
  • [22] X. J. Chen, K. A. Khor, S. H. Chan, L. G. Yu, Preparation yttria-stabilized zirconia electrolyte by spark-plasma sintering, 2003, Material Science and Engineering A, vol. 341, n. 1-2, 43-48.
  • [23] M. A. C. Berton, C. M. Garcia, C. Gusso, M. C. Nascimento, R. Muccillo, Nanotecnologia Aplicada a Geração de Energia Elétrica: Síntese e Caracterização e Testes Operacionais de Eletrólito Sólido para Célula a Combustível de Óxido Sólido, Eletroevolução, 2008, vol. 50, 17-
  • [24] Z. A. Munir, U. Anselmi-Tamburini, M. Ohiyanagi, The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method, Journal of Materials Science, 2006, vol. 41, n. 3, 763–777.
  • [25] J. Van Herle, R. Vasquez, Conductivity of Mn and Ni-doped stabilized zirconia electrolyte, Journal of the European Ceramic Society, 2004, vol. 24, n. 6, 1177–1180.
  • [26] T. S. Zhang, Z. H. Du, S. Li, L. B. Kong, X. C. Song, J. Lu, J. Ma, Transitional metal-doped 8 mol% yttria-stabilized zirconia electrolytes, Solid State Ionics, 2009, vol. 180, n. 23-25, 1311–1317.
  • [27] J. E. Bauerle, Study of electrolyte polarization by a complex admittance method, Journal of Physics and Chemistry of Solids, 1969, vol. 30, n. 12, 2657-2670.
Como citar:

Polla, P. T. B.; Valentini, M. I.; Junior, N. V.; Berton, M. A. C.; Conceição, L. da; "Evaluation of electrical conductivity and density of 8 mol% yttria-stabilized zirconia produced by Spark Plasma Sintering", p. 123-135 . In: Proceedings of 2nd International Seminar on Industrial Innovation in Electrochemistry . São Paulo: Blucher, 2016. São Paulo: Blucher, 2016.
ISSN 2318-4043, DOI 10.5151/chempro-s3ie2016-11

últimos 30 dias | último ano | desde a publicação