Full Article - Open Access.

Idioma principal


Barros, P. D.; Alves, J.L.; Oliveira, M. C.; Menezes, L. F.;

Full Article:

This work presents a study concerning both the deep drawing and ironing processes. The process conditions considered are the ones of the BENCHMARK 1 - Earing Evolution During Drawing and Ironing Processes, proposed under the NUMISHEET 2011 conference. The deep drawing and ironing operations are performed considering two typical body stock materials: AA5042 aluminum alloy and AKDQ steel. The results analyzed are the average cup heights after drawing and ironing processes as well as the required punch load. Two yield criteria were considered: Hill’48[9] and Cazacu and Barlat, 2001[3]. The constitutive parameters for the Hill’48 and the Cazacu and Barlat, 2001 were determined based on the experimental results for tensile tests with different orientations to the rolling direction, disk compression test and the equibiaxial tension test, using DD3MAT in-house code. The numerical simulations of the forming process are performed using DD3IMP in-house code. The blank sheet is discretized using 3D solid elements, allowing the accurate description of the contact conditions during the ironing process. The numerical results are compared with the experimental and numerical ones reported in the NUMISHEET 2011 conference proceedings[7]. Globally, the numerical results show that the earing prediction is sensitive to the blank holder modeling, the yield criterion selected, the work hardening law and the strategy used to identify the materials parameters.

Full Article:

Palavras-chave: Drawing, Ironing, Yield criterion, DD3IMP.,


DOI: 10.5151/meceng-wccm2012-19645

Referências bibliográficas
  • [1] Barlat F., Chung K., Richmond O., “Anisotropic plastic potentials for polycrystals and application to the design of optimum blank shapes in sheet forming”. Metall. Mater. Trans. A 25, 1209-1216, 1994.
  • [2] Bouvier S. Alves J.L., Oliveira M.C., Menezes L.F., “Modelling of anisotropic workhardening behaviour of metallic materials subjected to strain path changes”. Comp. Mater. Sci. 32, 301-315, 2005.
  • [3] Cazacu O., Barlat F., “Generalization of Drucker’s yield criterion to orthotropy”. Math. Mech. Solids, 6, 613-630, 2001.
  • [4] Chen X., Sowerby R., “Blank development and the prediction of earing in cup drawing”. Int. J. Mech. Sci. 8, 509-516, 1996.
  • [5] Chung K., Barlat F., Brem J.C., Lege D.J., Richmond O., “Blank shape design for a plana anisotropic sheet based on ideal sheet forming design theory and FEM analysis”. Int. J. Mech. Sci. 39, 105-120, 1997.
  • [6] Demirci H.I., Esner C., Yasar M., “Effect of the blank holder force on drawing of aluminum alloy square cup: theoretical and experimental investigation”. J. Mater. Process. Technol. 206, 152e160, 2008.
  • [7] Dick R.E.; Yoon J-W.; Huh H.S.; Bae G.; BM1 – Earing Evolution During Drawing and Ironing processes, Part C Benchmark Problems and Results, Proc. of the 8th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes, Huh, H.; Chung, K.; Han, S.S.; Chung, W.J.; (Eds.), 171-226, Kaist Press, 2011.
  • [8] Gavas M., Izciler M., “Design and application of blank holder system with spiral spring in deep drawing of square cups”. J. Mater. Process. Technol. 171, 274-282, 2006.
  • [9] Hill R., “A Theory of the Yielding and Plastic Flow of Anisotropic Metals”. Proc. R. Soc. Lon. Ser.-A, 19, 281–297, 1948.
  • [10] Lin C.T., Kwan C.T., “Application of abductive network and FEM to predict the optimal blank contour of an elliptic cylindrical cup from deep drawing”. J. Mater. Process. Technol. 209, 1351-1361, 2009.
  • [11] Jahazi M., Goudarzi M., “The influence of thermomechanical parameters on the earing behaviour of 1050 and 1100 aluminium alloys”. J. Mater. Process. Technol. 63, 610-613, 1997.
  • [12] Kanetake N., Tozawa Y., Otani T., “Calculations from texture of earing in deep drawing for FCC metal sheets”. Int. J. Mech. Sci. 25, 337-345, 1983.
  • [13] Kao P.W., “Texture and earing behaviour of cold-rolled aluminium alloy 3004”. Mater. Sci. Eng. 74, 147-157, 1985.
  • [14] Kim J.H., Lee M.G., Barlat F., Wagoner R.H., Chung K., “An elasto-plastic constitutive model with plastic strain rate potentials for anisotropic cubic metals”. Int. J. Plast. 24, 2298–2334, 2008.
  • [15] Kishor N., Kumar D.R., “Optimization of initial blank shape to minimize earing in deep drawing using finite element method”. J. Mater. Process. Technol. 130-131, 20-30, 2002.
  • [16] Ku T.W., Kim Y., Kang B.S., “Design and modification of tool to manufacture rectangular cup of NieMH battery for hybrid cars”. J. Mater. Process. Technol. 187-188, 197-201, 2007.
  • [17] Menezes L.F.; Teodosiu C.; “Improvement of the frictional contact treatment in a single loop iteration algorithm specific to deep-drawing simulations”. Proc. of NUMISHEET’99 - International Conference on Numerical Simulation of 3D Sheet Forming Processes, Gelin, J.C.; Picart, P.; (Eds.), 197-202, 1999.
  • [18] Menezes L.F.; Teodosiu C.; “Three-dimensional numerical simulation of the deepdrawing process using solid finite elements”, J. Mater. Process. Technol. 97(1–3), 100– 106, 2000.
  • [19] Mulder J., Nový J., Vegter H., “Analytical and numerical simulation of deep drawing and ironing”. Proc. of NUMISHEET’11 - Proc. of the 8th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes, Huh, H.; Chung, K.; Han, S.S.; Chung, W.J.; (Eds.), 134-141, Kaist Press, 2011.
  • [20] Oliveira M.C.; Alves J.L.; Menezes L.F. “One Step Springback Strategies in Sheet Metal Forming”. Proc. of COMPLAS’2003, VII International Conference on Computational Plasticity - Fundamentals and Applications, Owen, D.R.J.; Oñate, E.; Suárez, B.; (Eds.), CIMNE, 87, 2003.
  • [21] Oliveira M.C.; Alves J.L.; Menezes L.F.; “Algorithms and Strategies for Treatment of Large Deformation Frictional Contact in the Numerical Simulation of Deep Drawing Process”, Archives of Computational Methods in Engineering 15:113-162, 2008.
  • [22] Pegada V., Chun Y., Santhanam S., “An algorithm for determining the optimal blank shape for the deep drawing of aluminum cups”. J. Mater. Process. Technol. 125-126, 743-750, 2002.
  • [23] Rabahallah M., Balan T., Bouvier S., Teodosiu C., “Time integration scheme for elastoplastic models based on anisotropic strain-rate potentials”. Int. J. Numer. Methods Eng, 80, 381–402, 2009.
  • [24] Saha R., Ray R.K., Bhattacharjee D., “Attaining deep drawability and nonearing properties in Tiþ Nb interstitial-free steels through double cold rolling and annealing”. Scr. Mater. 57, 257-260, 2007.
  • [25] Soare S., Yoon J.W., Cazacu O., “On the use of homogeneous polynomials to develop anisotropic yield functions with applications to sheet forming”. Int. J. Plast. 24, 915-944, 2008.
  • [26] Soare S.C., Barlat F., “A study of the Yld2004 yield function and one extension in polynomial form: A new implementation algorithm, modeling range, and earing predictions for aluminum alloy sheets”. Eur. J. Mech A-Solid. 30, 6, 807–819, 2011.
  • [27] Thiruvarudchelvan S., Loh N.H., “Deep drawing of cylindrical cups with friction- actuated blank holding”. J. Mater. Process. Technol. 40, 343-358. 1994.
  • [28] Thiruvarudchelvan S., “Three novel techniques for forming hemispherical cups with flexible tooling”. J. Mater. Process. Technol. 54, 129-136, 1995.
  • [29] Toh C.H., Kobayashi S., “Deformation analysis and blank design in square cup drawing”. Int. J. Mach. Tool Des. Res. 25, 15-32. 1985.
  • [30] Yoon J.W., Barlat F., Dick R.E., Karabin M.E., “Prediction of six or eight ears in a drawn cup based on a new anisotropic yield function”. Int. J. Plast. 22, 174-193, 2006.
  • [31] Yoon J.H., Cazacu O., Yoon J.W., Dick R.E., “Earing predictions for strongly textured aluminum sheets”. Int. J. Mech. Sci. 52, 12, 1563–1578, 2010.
  • [32] Yoon J.H., Cazacu O., “Anisotropic yield function capable of predicting eight ears”. Proc. of NUMISHEET’11 - Proc. of the 8th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes, Huh, H.; Chung, K.; Han, S.S.; Chung, W.J.; (Eds.), 86-91, Kaist Press, 2011.
  • [33] Yoon J.W., Dick R.E., Barlat F., “A new analytical theory for earing generated from anisotropic plasticity”. Int. J. Plast. 27, 1165–1184, 2011.
  • [34] Yu T.M., Brooks C.R., Goodrich S., “The effect of cold working and annealing practice on earing in 3104 AI alloy sheet”. Mater. Charact. 30, 251-259, 1993.
  • [35] Zaky A.M., Nassr A.B., El-Sebaie M.G., “Optimum blank shape of cylindrical cups in deep drawing of anisotropic sheet metals”. J. Mater. Process. Technol. 76, 203-211, 1998.
Como citar:

Barros, P. D.; Alves, J.L.; Oliveira, M. C.; Menezes, L. F.; "EARING EVOLUTION DURING DRAWING AND IRONING PROCESSES", p. 3954-3973 . In: In Proceedings of the 10th World Congress on Computational Mechanics [= Blucher Mechanical Engineering Proceedings, v. 1, n. 1]. São Paulo: Blucher, 2014.
ISSN 2358-0828, DOI 10.5151/meceng-wccm2012-19645

últimos 30 dias | último ano | desde a publicação