Full Article - Open Access.

Idioma principal

Development of chitosan membranes for use in pem fuel cells

Lupatini, K. N.; Schaffer, J. V.; Machado, B.; Silva, E. S. da; Ellendersen, L. S. N.; Muniz, G. I. B.; Ferracin, R. J.; Alves, H. J.;

Full Article:

Membranes prepared with commercial chitosan and with chitosan extracted from carapaces of freshwater shrimp were developed to be tested as low cost electrolyte in PEM-FC fuel cells. The main factors of interest of this research are related to the possibility that the biopolymer might undergo physical and chemical modifications due to amine groups (-NH2) existing in the structure. The shrimp carapaces were obtained from residues of shrimp farming in the West Region of Paraná – Brazil. Researches testing chitosan membranes as proton conductors usually apply matrices of other polymers together, forming composites with more suitable properties for this purpose. Very few studies investigate the effects of chitosan properties for obtaining these membranes and normally, membranes of commercial chitosan are utilized. In original research, it was investigated the influence of the degree of deacetylation (DDA) and the molar mass (Mv) of chitosan used in the preparation of membranes on the performance regarding proton conductivity and other properties. For obtaining chitosan and membranes, classical chemical methods were applied. The results indicate that chitosan produced in laboratory led to obtaining membranes with promising properties, presenting proton conductivity one hundred times higher when compared to those presented by commercial chitosan membranes, which are in order of 1,6 and 1,9 10-2 S.cm-¹. The significant increase in proton conductivity can be associated with the higher number and availability of -NH2 groups existent in chitosan with higher DDA and lower Mv, produced in laboratory. The versatility of chitosan and the possibility of exploration and chemical modification of its structure make it attractive for development of proton-conducting polymer membranes with very similar performance when compared to the performance presented by Nafion®.

Full Article:

Palavras-chave: Fuel cell, PEM, Proton conductivity, Materials for electrolyte,

Palavras-chave: ,

DOI: 10.5151/chempro-s3ie2016-09

Referências bibliográficas
  • [1] MALIS J.; MAZÚR, P.; PAIDAR, M.; BYSTRON, T.; BOUZEK, K.; “Nafion stability under conditions of PEM water electrolysis at elevated tempera ture and pressure”, International Journal of Hydrogen Energy, v. 41, Inssue 4, pp. 2177-2188, Jan. 2016.
  • [2] SMITHA, B.; DEVI, A.; SRIDHAR, S. “Proton-conducting composite membranes of chitosan and sulfonated polysulfone for fuel cell application”, International Journal of Hydrogen Energy, v. 33, Inssue 15, pp. 4138-4146, Ago. 2008.
  • [3] ASSIS, O. B. G. O.; BRITTO, D. de. “Processo básico de extração de quitinas e produção de quitosana a partir de resíduos da carnicicultura”, Revista Brasileira de Agrociência, v. 14, n. 1. pp. 91-100, Jan./Mar. 2008.
  • [4] BESSA-JUNIOR, A. P.; GONÇALVES, A. A. “Análise econômica e produtiva da quitosana extraída do exoesqueleto de camarão”, Actapesca, v. 1, n. 1, pp. 13-28, 2013.
  • [5] CAMPANA-FILHO, S. P.; BRITTO, D.; CURTI, E.; ABREU, F. R.; CARDOSO, M. B.; BATISTA, M. V.; SIM, P. C.; GOY, R. C.; SIGNINI, R.; LAVALL, R. L. “Extração, estruturas e propriedades de α e β quitina”, Química Nova, v. 30, pp. 644-650, 2007.
  • [6] SANTOS, J. E.; SOARES, J. P.; DOCKAL, E. R.; CAMPANA- FILHO, S. P.; CAVALHEIRO, E. T. G. “Caracterização de quitosanas comerciais de diferentes origens”, Polímeros: Ciência e Tecnologia, v. 13, n. 4, pp. 242-249, Oct./Dec. 2003.
  • [7] TOLAIMATE, A.; DESBRIERESB, J.; RHAZIA, M.; ALAGUIC, A. “Contribution to the preparation of chitins and chitosans with controlled physico- chemical properties”, Polymer, v. 44, pp. 7939–7952, Nov. 2003.
  • [8] KASSAI, M. R. “Calculation of Mark-Houwink-Sakurada (MHS) equation viscometric constants for chitosan in any solvente-temperature system using experimental report viscosimetric constants data”, Carbohydrate Polymers, v. 68, pp. 477-488, 2007.
  • [9] RIBEIRO, C.; SCHEUFELE, F. B.; ESPINOZA-QUINONES, F. R.; MODENES, A. N.; SILVA, C. M. G.; VIEIRA, M. G. A.; BORBA, C. E. “Characterization of Oreochromis niloticus fish scales and assessment of their potential on the adsorption of reactive blue 5G dye”, Colloids and Surfaces A: Physicochem. Eng. Aspects, v. 482, pp. 693–701, Out. 2015.
  • [10] VICENTINI, D. S. “Efeito da incorporação de peneiras moleculares, poli vinil álcool), montmorilonitas e dióxido de titânio em membranas de quitosana”, Doutorado (Tese), Universidade Federal de Santa Catarina, Florianópolis-SC, 2009.
  • [11] PAGANIN, V. A.; OLIVEIRA, C. L. F.; TICIANELLI, E. A.; SPRINGER, T. E.; GONZALES, E. R. “Modelistic interpretation of the impedance response of a polymer electrolyte fuel cell”, Electrochimica Acta, v. 43, pp. 3761 - 3766, Ago. 1998.
  • [12] CARPINÉ, D.; DAGOSTIN, J. L. A.; BERTAN, L. C.; MAFRA, M. R. “Development and characterization of soy protein protein isolate emulsion-based edible films with added coconut oil for olive oil packaging: barrier, mechanical, and termal properties”, Food Bioprocess Technolgy, v. 8, pp. 1811 – 1823, Mai. 2015
  • [13] ARANTES, M. K.; KUGELMEIER, C. L.; CARDOSO-FILHO, L.; MONTEIRO, M. R.; OLIVEIRA, C. R.; ALVES, H. J. “Influence of the Drying Route on the Depolymerization and Properties of Chitosan”, Polymer Engineering and Science, v. 55, inssue 9, pp. 1969-1976, Set. 2015.
  • [14] AGUIAR, K. R.; BATALHA, G. P.; PEIXOTO, M.; RAMOS, A.; PEZZIN, S. H. “Produção de membranas híbridas zirconizadas de SPEEK/Copolissilsesquioxano para aplicação em células a combustível do tipo PEM”, Polímeros, v. 22, n. 5, pp. 453 – 459, 2012.
  • [15] LIMA, R. S. C. “Desenvolvimento de Sistemas de Liberação Controlada de Fármacos: Quitosana/Insulina”, Doutorado (Tese), Universidade Federal de Campina Grande, Campina Grande-PB, 2010.
  • [16] CAMPANA-FILHO, S. P.; SIGNINI, R. “Efeito na desacetilação de quitina”, Polímeros: Ciência e Tecnologia, v. 11, n.4, pp. 169-173, 2001.
  • [17] PERLES, C. J. “Propriedades físico-químicas relacionadas ao desenvolvimento de membranas de Nafion® para aplicações em células a combustível do tipo PEMFC”, Polímeros: Ciência e Tecnologia, v. 18, n. 4, p. 281 – 288, 2008.
  • [18] LUO, Z.; CHANG, Z.; ZHANG, Y.; LIU, Z.; LI, J. “Electro-osmotic drag coefficient and proton conductivity in Nafion® membrane for PEMFC”, International Journal of Hydrogen Energy, v. 35, Inssue 7, pp. 3120 – 3124, Abr. 2010.
Como citar:

Lupatini, K. N.; Schaffer, J. V.; Machado, B.; Silva, E. S. da; Ellendersen, L. S. N.; Muniz, G. I. B.; Ferracin, R. J.; Alves, H. J.; "Development of chitosan membranes for use in pem fuel cells", p. 103-116 . In: Proceedings of 2nd International Seminar on Industrial Innovation in Electrochemistry . São Paulo: Blucher, 2016. São Paulo: Blucher, 2016.
ISSN 2318-4043, DOI 10.5151/chempro-s3ie2016-09

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações