Full Article - Open Access.

Idioma principal

CO2 separation membranes: innovative combination of known materials

Patrício, S. G.; Rondão, A. I. B.; Jamale, A.; Martins, N.; Marques, F. M. B.;

Full Article:

Standard electrolyte materials (ceramic oxide-ion conductors and eutectic mixtures of alkaline carbonates) used in Solid Oxide and Molten Carbonate Fuel Cell technologies can be combined to produce composite CO2 separation membranes for a variety of applications. The model performance of these membranes is reviewed highlighting critical design and performance parameters. This model is used to build diagrams where actual membrane permeation data can be benchmarked against an ideal performance, providing immediate guidance on likely kinetic limitations. A complementary pictorial tool is also described to assess the electrical microstructure of these composites before permeation tests. The added value from combination of such diagrams in process control or membrane development is discussed.

Full Article:

Palavras-chave: CO2 separation membranes, ambipolar conductivity, electrical microstructure, performance benchmarking,

Palavras-chave: ,

DOI: 10.5151/chempro-s3ie2016-07

Referências bibliográficas
  • [1] K. POINTON, B. LAKEMAN, J. IRVINE, J. BRADLEY, S. JAIN, The development of a carbon–air semi fuel cell, J. Power Sources, 162 (2006) 750–756.
  • [2] B. ZHU, X. LIU, P. ZHOU, X. YANG, Z. ZHU, W. ZHU, Innovative solid carbonate – ceria composite electrolyte fuel cells, Electrochem. Comm., 3 (2001) 566-571.
  • [3] Y. LI, Z. RUI, C. XIA, M. ANDERSON, Y.S. LIN, Performance of ionic-conducting ceramic/carbonate composite material as solid oxide fuel cell electrolyte and CO2 permeation membrane, Catal. Today, 148 (2009) 303-309.
  • [4] Z. RUI, M. ANDERSON, Y. LI, Y.S. LIN, Ionic conducting ceramic and carbonate dual-phase membranes for carbon dioxide separation, J. Membr. Sci, 417-418 (2012) 174-182.
  • [5] X. DONG, J.O. LANDEROS, Y. S. LIN, An asymmetric tubular ceramic-carbonate dual phase membrane for high temperature CO2 separation, Chem. Commun., 49 (2013) 9654-9656.
  • [6] B. ZHU, I. ALBINSSON, C. ANDERSSON, K. BORSAND, M. NILSSON, B.-E. MELLANDER, Electrolysis studies based on ceria-based composites, Electrochem. Commun., 8 (2006) 495-498.
  • [7] I.A. AMAR, C.TG. PETIT, L. ZHANG, R. LAN, P.J. SKABARA, S. TAO, Electrochemical synthesis of ammonia based on doped-ceria-carbonate composite electrolyte and perovskite cathode, Solid State Ionics, 201 (2011) 94–100.
  • [8] R.L. FREDERICK, E.K. WILLIAMS, 23Na and 14C Diffusion in a Mixture of Li/Na/KCO3, J. Electrochem. Soc., 116 (1969) 454-455.
  • [9] P.L. SPEDDING, R. MILLS, Trace-Ion Diffusion in Molten Alkali Carbonates, J. Electrochem. Soc., 112 (1965) 594-59
  • [10] P.L. SPEDDING, R. MILLS, Tracer Diffusion Measurements in Mixtures of Molten Alkali Carbonates, J. Electrochem. Soc., 113 (1966) 599-603.
  • [11] W. ZHU, C. XIA, D. DING, X. SHI, G. MENG, Electrical properties of ceria-carbonate composite electrolytes, Mater. Res. Bull., 41 (2006) 2057-2064.
  • [12] A. EVANS, W. XING, T. NORBY, Electromotive Force (emf) Determination of Transport Numbers for Native and Foreign Ions in Molten Alkali Metal Carbonates, J. Electrochem. Soc., 162 (2015) F1135-F1143.
  • [13] H. NÄFE, Electrochemical CO2 Separation through an Alkali-Carbonate-Based Membrane, ECS J. Solid State Sci. Technol., 3 (2014) N23-N29.
  • [14] P.L. SPEDDING, Electrical conductance of molten alkali carbonate binary-mixtures, J. Electrochem. Soc., 120 (1973) 1049-52.
  • [15] T. KOJIMA, Y. MIYAZAKI, K. NOMURA, K. TANIMOTO, Electrical conductivity of molten Li2CO3-X2CO3 (X: Na, K, Rb, and Cs) and Na-2CO3-Z2CO3 (Z: K, Rb, and Cs), J. Electrochem. Soc., 154 (2007) F222-30.
  • [16] B.C.H. STEELE, Appraisal of Ce1−yGdyO2−y/2 electrolytes for IT-SOFC operation at 500 °C, Solid State Ionics, 129 (2000) 95-110.
  • [17] F.M.L. FIGUEIREDO, F.M.B. MARQUES, Electrolytes for solid oxide fuel cells, Wiley Interdisciplinary Reviews: Energy and Environment, 2 (2013) 52-72
  • [18] J.L WADE, K.S. LACKNER, A.C. WEST, Transport model for high temperature, mixed conducting CO2 separation membranes, Solid State Ionics, 178 (2007) 1530-1540.
  • [19] Z. RUI, M. ANDERSON, Y.S. LIN, Y. LI, Modeling and analysis of carbon dioxide permeation through ceramic-carbonate dual-phase membranes, J. Memb. Sci., 345 (2009) 110-118.
  • [20] J. ORTIZ-LANDEROS, T. NORTON, Y.S. LIN, Effects of support pore structure on carbon dioxide permeation of ceramic-carbonate dual-phase membranes, Chem. Eng. Sci., 104 (2013) 891-898.
  • [21] F.M.B. MARQUES, S.G. PATRÍCIO, E. MUCCILLO, R. MUCCILLO, On the Model Performance of Composite CO2 Separation Membranes, Electrochim. Acta, 210 (2016) 87–95.
  • [22] S.G. PATRÍCIO AND F.M.B. MARQUES, Benchmarking the ambipolar conductivity of composite electrolytes for gas separation membranes, Int. J. Energ. Res. (2016) DOI: 10.1002/er.3596.
  • [23] C.M.C SOARES, S.G. PATRÍCIO, F.M.L. FIGUEIREDO, F.M.B. MARQUES, Relevance of the ceramic content on dual oxide and carbonate-ion transport in composite membranes, Int. J. Hydrogen Energ. 39 (2014) 5424-32.
  • [24] A.I.B. RONDÃO, S.G. PATRÍCIO, F.M.L. FIGUEIREDO, F.M.B. MARQUES, Composite electrolytes for fuel cells: Long-term stability under variable atmosphere, Int. J. Hydrogen Energ., 39 (2014) 5460-69.
  • [25] A.I.B. RONDÃO, S.G. PATRÍCIO, F.M.L. FIGUEIREDO, F.M.B. MARQUES, Role of gas-phase composition on the performance of ceria-based composite electrolytes, Int. J. Hydrogen Energ., 38 (2013) 5497-5506.
  • [26] J. SUNARSO, S. BAUMANN, J.M. SERRA, W.A. MEULENBERG, S. LIU, Y.S. LIN, J.C. DINIZ DA COSTA, Mixed ionic–electronic conducting (MIEC) ceramic-based membranes for oxygen separation, J. Memb. Sci., 320 (2008) 13-41.
  • [27] J. TONG, L. ZHANG, M. HAN, K. HUANG, Electrochemical separation of CO2 from a simulated flue gas with high-temperature ceramic–carbonate membrane: New observations, J. Membr. Sci., 477 (2015) 1-6.
  • [28] S.G. PATRÍCIO, E. PAPAIOANNOU, G. ZHANG, I.S. METCALFE, F.M.B. MARQUES, High performance composite CO2 separation membranes, J. Membr. Sci., 471 (2014) 211–218.
Como citar:

Patrício, S. G.; Rondão, A. I. B.; Jamale, A.; Martins, N.; Marques, F. M. B.; "CO2 separation membranes: innovative combination of known materials", p. 81-96 . In: Proceedings of 2nd International Seminar on Industrial Innovation in Electrochemistry . São Paulo: Blucher, 2016. São Paulo: Blucher, 2016.
ISSN 2318-4043, DOI 10.5151/chempro-s3ie2016-07

últimos 30 dias | último ano | desde a publicação