Full Article - Open Access.

Idioma principal

ARBITRARY ORDER NODAL MIMETIC DISCRETIZATIONS OF ELLIPTIC PROBLEMS ON POLYGONAL MESHES WITH ARBITRARY REGULAR SOLUTION

Veiga, L. Beirão da ; Manzini, G. ;

Full Article:

We present a new family of mimetic methods on unstructured polygonal meshes for the diffusion problem in primal form for solution with regularity C®(­) for any integer ® ¸ 0. These methods are derived from a local consistency condition that is exact for polynomials of degree m = ® + 1. The degrees of freedom are (a) solution and derivative values of various degree at the mesh vertices and (b) solution moments inside polygons. Theoretical results concerning the convergence of the method are briefly summarized and an optimal error estimate is given in a mesh-dependent norm that mimics the energy norm. Numerical experiments confirm the convergence rate that is expected from the theory.

Full Article:

Palavras-chave: Diffusion problem, mimetic finite difference method, polygonal mesh, generalized mesh, high-order scheme,

Palavras-chave:

DOI: 10.5151/meceng-wccm2012-18943

Referências bibliográficas
  • [1] Aarnes J. E., Krogstad S., and Lie K.A., “Multiscale mixed/mimetic methods on cornerpoint grids”. Computat. Geosci., 12(3):297–315, 2007.
  • [2] Beirão da Veiga L. “A residual based error estimator for the mimetic finite difference method”. Numer. Math., 108(3):387–406, 2008.
  • [3] Beirão da Veiga L. “A mimetic discretization method for linear elasticity”. Math. Mod. and Numer. Anal., 44(2):231–250, 2010.
  • [4] Beirão da Veiga L., Droniou D., and Manzini G. “A unified approach to handle convection terms in Finite Volumes and Mimetic Discretization Methods for elliptic problems”. IMA J. Numer. Anal., 31(4):1357-1401, 2011.
  • [5] Beirão da Veiga L., Gyrya V., Lipnikov K., and Manzini G.. “Mimetic finite difference method for the Stokes problem on polygonal meshes”. J. Comput. Phys., 228(19):7215– 7232, 2009.
  • [6] Beirão da Veiga L. and Lipnikov K. “A mimetic discretization of the Stokes problem with selected edge bubbles.” SIAM J. Sci. Comp., 32(2):875–893, 2010.
  • [7] Beirão da Veiga L., Lipnikov K., and Manzini G. “Convergence analysis of the high-order mimetic finite difference method”. Numer. Math., 113(3):325–356, 2009.
  • [8] Beirão da Veiga L., Lipnikov K., and Manzini G. “Error analysis for a Mimetic Discretization of the steady Stokes problem on polyhedral meshes”. SIAM J. Numer. Anal., 48:1419–1443, 2011.
  • [9] Beirão da Veiga L., Lipnikov K., and Manzini G. “Arbitrary-order nodal mimetic discretizations of elliptic problems on polygonal meshes”. SIAM Journal on Numerical Analysis, 49(5):1737–1760, 2011.
  • [10] Beirão da Veiga L. and Manzini G. “An a posteriori error estimator for the mimetic finite difference approximation of elliptic problems”. Int. J. Numer. Meth. Engrg., 76(11):1696–1723, 2008.
  • [11] Beirão da Veiga L. and Manzini G. “A higher-order formulation of the mimetic finite difference method”. SIAM Journal on Scientific Computing, 31(1):732–760, 2008.
  • [12] Beirão da Veiga L. and Mora D. “A mimetic discretization of the Reissner-Mindlin plate bending problem”. Numer. Math., 117(3):425–462, 2011.
  • [13] Brezzi F., Buffa A., and Lipnikov K. “Mimetic finite differences for elliptic problems”. M2AN Math. Model. Numer. Anal., 43(2):277–295, 2009.
  • [14] Brezzi F., Lipnikov K., and Shashkov M. “Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes”. SIAM J. Numer. Anal., 43(5):1872–1896, 2005.
  • [15] Brezzi F., Lipnikov K., and Shashkov M. “Convergence of mimetic finite difference method for diffusion problems on polyhedral meshes with curved faces”. Math. Models Methods Appl. Sci., 16(2):275–297, 2006.
  • [16] Campbell J. and Shashkov M. “A tensor artificial viscosity using a mimetic finite difference algorithm”. J. Comput. Phys., 172:739–765, 2001.
  • [17] Cangiani A., Gardini F., and Manzini G. “Convergence of the mimetic finite difference method for eigenvalue problems in mixed form”. Comput. Methods Appl. Mech. Engrg., 200((9-12)):1150–1160, 2010.
  • [18] Cangiani A. and Manzini G. “Flux reconstruction and pressure post-processing in mimetic finite difference methods”. Comput. Methods Appl. Mech. Engrg., 197/9-12:933–945, 2008.
  • [19] Cangiani A., Manzini G., and Russo A. “Convergence analysis of the mimetic finite difference method for elliptic problems”. SIAM J. Numer. Anal., 47(4):2612–2637, 2009.
  • [20] Gyrya V. and Lipnikov K. “High-order mimetic finite difference method for diffusion problems on polygonal meshes”. J. Comput. Phys., 227:8841–8854, 2008.
  • [21] Hyman J., Shashkov M., and Steinberg S. “The numerical solution of diffusion problems in strongly heterogeneous non-isotropic materials”. J. Comput. Phys., 132:130–148, 1997.
  • [22] Lipnikov K., Manzini G., Brezzi F., and Buffa A. “The mimetic finite difference method for 3D magnetostatics fields problems”. J. Comput. Phys., 230(2):305–328, 2011.
  • [23] Lipnikov K., Manzini G., and Svyatskiy D. “Analysis of the monotonicity conditions in the mimetic finite difference method for elliptic problems”. J. Comput. Phys., 230(7):2620 – 2642, 2011.
  • [24] Lipnikov K., Morel J., and Shashkov M.. “Mimetic finite difference methods for diffusion equations on non-orthogonal non-conformal meshes”. J. Comput. Phys., 199, 2004.
  • [25] Lipnikov K., Moulton J. D., and Svyatskiy D. “A Multilevel Multiscale Mimetic (M3) method for two-phase flows in porous media”. J. Comp. Phys., 227:6727–6753, 2008.
  • [26] Morel J., Roberts R., and Shashkov M. “A local support-operators diffusion discretization scheme for quadrilateral r - z meshes”. J. Comput. Phys., 144:17–51, 1998.
  • [27] Shashkov M. and Steinberg S. “Solving diffusion equations with rough coefficients in rough grids”. Journal of Computational Physics, 129(2):383 – 405, 1996.
Como citar:

Veiga, L. Beirão da; Manzini, G.; "ARBITRARY ORDER NODAL MIMETIC DISCRETIZATIONS OF ELLIPTIC PROBLEMS ON POLYGONAL MESHES WITH ARBITRARY REGULAR SOLUTION", p. 2616-2628 . In: In Proceedings of the 10th World Congress on Computational Mechanics [= Blucher Mechanical Engineering Proceedings, v. 1, n. 1]. São Paulo: Blucher, 2014.
ISSN 2358-0828, DOI 10.5151/meceng-wccm2012-18943

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações