Full Article - Open Access.

Idioma principal


Sayed, N. Al; Longatte, E.;

Full Article:

The main purpose of this work is to simulate the displacement in a fluid medium, of a rigid cylinder contained in another fixed one. This phenomena is called annular cavity. To fulfill our goal, we used the Arbitrary Lagrangian-Eulerian method, to describe the fluid-structure interface and treat the mesh’s deformation. Finally, a numerical test is performed, on one hand to study the numerical stability, and on the other hand to determine the contact force between the two cylinders.

Full Article:

Palavras-chave: Fluid-Structure Interaction, Annular Cavity, Stability, Contact analysis.,


DOI: 10.5151/meceng-wccm2012-19670

Referências bibliográficas
  • [1] EUROPLEXUS, A Computer Program for the Finite Element Simulation of Fluid-Structure Systems under Transient Dynamic Loading. EUROPEAN COMMISSION, 2012.
  • [2] M. Abbas. Formulation discrète du contact-frottement. Documentation de référence de Code Aster [R5.03.50].
  • [3] F. Archambeau, N. Méchitoua, and M. Sakiz. Code_Saturne: A finite volume code for the computation of turbulent incompressible flows-industrial applications. Int. J. on Finite Volumes, Electronical edition: http://averoes.math.univ-paris1fr/html, ISSN 1634(0655), 2004.
  • [4] T. Belytschko and M. Neal. Contact-impact by the pinball algorithm with penalty and lagrangian methods. International Journal for Numerical Methods in Engineering, 31:547–572, 1991.
  • [5] S.P.A. Bordas, T. Rabczuk, N-X Hung, V. P. Nguyen, S. Natarajan, T. Bog, D. M. Quan, and N. V. Hiep. Strain smoothing in FEM and XFEM. Computers and Structures, 88:1419–1443, 2010.
  • [6] F. Casadei, J.P. Halleux, H. Bung, and M. Lepareux. Some tentative guidelines for the development of the EUROPLEXUS software system. Technical Note N. I.00.146, 2000.
  • [7] J. Donea, A. Huerta, J.-P. Ponthot, A. Rodriguez-Ferran, E. Stein, R. de Borst, and T.J.R. Hughes. Encyclopedia of Computational Mechanics, Volume 1, Chapter 4:413–437, 2004.
  • [8] M. A. Fernández, J.-F Gerbeau, and C. Grandmont. A projection algorithm for fluid-structure interaction problems with strong added-mass effect. Comptes Rendus Mathématique, 342:279–284, 2006.
  • [9] Axel Gerstenberger and Wolfgang A. Wall. An eXtended Finite Element Method/Lagrange multiplier based approach for fluid-structure interaction. Comput. Methods Appl. Mech. Engrg., 197:1699–1714, 2008.
  • [10] G.Papadakis. A novel pressure-velocity formulation and solution method for fluidstructure interaction problems. Journal of Computational Physics, 227:3383–3404, 2008.
  • [11] C. Hirth, A.A. Amsden, and J. Cook. An arbitrary Lagrangian-Eulerian computing method for all flow speeds. Journal of Computational Physics, 14:227–253, 1974.
  • [12] A. KONTER. Advanced finite element contact benchmarks. NAFEMS, 2006.
  • [13] H.J.-P Morand and R. Ohayon. Fluid-Structure Interactions. Wiley, 1995.
  • [14] M. P. Païdoussis, S. J. Price, and E. de Langre. Fluid-Structure Interactions. Cambridge, 2011.
  • [15] C. Peskin. The immersed boundary method. Cambridge University Press, Acta Numerica:1–39, 2002.
  • [16] M. Souli and J. Zolesio. Arbitrary Lagragian-Eulerian and free surface methods in fluid mechanics. Computer Methods in Applied Mechanics and Engineering, 191 (3-5):451–466, 2001.
Como citar:

Sayed, N. Al; Longatte, E.; "VIBRATION OF SLENDER STRUCTURE WITH LARGE DEFORMATION, CONTACT AND FLOW", p. 4017-4027 . In: In Proceedings of the 10th World Congress on Computational Mechanics [= Blucher Mechanical Engineering Proceedings, v. 1, n. 1]. São Paulo: Blucher, 2014.
ISSN 2358-0828, DOI 10.5151/meceng-wccm2012-19670

últimos 30 dias | último ano | desde a publicação