Full Article - Open Access.

Idioma principal


Salinas, C.H.; Vasco, D.A.; Moraga, N.O.;

Full Article:

A new method based on volume of fluid (VOF) for interface tracking in the simula-tion of injection molding is presented. The proposed method is comprised by two main stages: accumulation and distribution of the volume fraction. In the first stage the equation for the volume fraction with a non-interfacial flux condition is solved meanwhile in the second stage the accumulated volume of fluid that arises as a consequence of the application of the first one is dispersed. This procedure guarantees that the fluid fills the available space without dispersion of the interface. The mathematical model is based on two-phase transport equa-tions which are numerically integrated through the Control Volume Finite Element Method (CVFEM). The numerical results for the interface position are validated with experimental results and numerical data available in the literature. The transient position of the advance fronts showed an effective and consistent simulation of an injection molding process. The non-dispersive VOF method here proposed will be implemented for the simulation of non-isothermal injection molding in two-dimensional cavities.

Full Article:

Palavras-chave: Free surface, Eulerian, Finite volume, Navier-Stokes, Laminar flow,


DOI: 10.5151/meceng-wccm2012-19736

Referências bibliográficas
  • [1] Baliga B.R., Patankar S.V., “A new finite element formulation for convection diffusion problems”. Numer. Heat Transfer, Part B. 3, 393-409, 1980.
  • [2] Cavendish J.C., Field D.A., Frey W.H., “An Approach to Automatic Three-Dimensional Finite Element Mesh Generation”. Int. J. Numer. Methods Eng. 21, 329-347, 1985.
  • [3] Cruchaga M., Celentano D., Tezduyar T.E., “Moving-interface computations with the edge-tracked interface locator technique (ETILT)”. Int. J. Numer. Methods Fluids. 47, 451–469, 2005.
  • [4] Dhatt G., Gao D.M., Cheick A.B., “A Finite element simulation of metal flow in moulds”. Int. J. Numer. Methods Eng. 30, 821-831, 1990.
  • [5] Estacio K.C., Mangiavacchi N., “Simplified model for mould filling using CVFEM and unstructured meshes”. Commun. Numer. Methods Eng. 23, 345-361, 2007.
  • [6] Gao D.M., “A three-dimensional hybrid finite element-volume tracking model for mould filling in casting processes”. Int. J. Numer. Methods Fluids. 29, 877-895, 1999.
  • [7] Hieber C.A., Shen S.F., “A finite element/finite difference simulation of the injection molding filling process”. J. Non-Newtonian Fluid Mech. 7, 1-32, 1980.
  • [8] Hirt C.W., Nichols B.D., “Volume of Fluid (VOF) method for the dynamics of free boundaries”. J. Comput. Phys. 39, 201-225, 1981.
  • [9] Khor C.Y., Ariff Z.M., Ani F.C., Mujeebu M.A., Abdullah M.K., Abdullah M.Z., Joseph M.A., “Three-dimensional numerical and experimental investigations on polymer rheolo-gy in meso-scale injection molding”. Int. Commun. Heat Mass Transfer. 37, 131-139, 2010.
  • [10] Kim M.S., Lee W.I., “A new VOF-based numerical scheme for the simulation of fluid flow with free surface. Part I: New free surface-tracking algorithm and its verification”. Int. J. Numer. Methods Fluids. 42, 765–790, 2003.
  • [11] Lakehai D., Meier M., Fulgosi M., “Interface tracking towards the direct simulation of heat and mass transfer in multiphase flows”. Int. J. Heat Fluid Flow. 23, 242-257, 2002.
  • [12] Lewis R.W., Ravindran K., “Finite element simulation of metal casting”. Int. J. Numer. Methods Eng. 47, 29-59, 2000.
  • [13] Lewis R.W., Usmani A.S., Cross J.T., “Efficient mould filling simulation in castings by an explicit finite element method”. Int. J. Numer. Methods Fluids. 20, 493–506, 1995.
  • [14] Maier R.S., Rohaly T.F., Advani S.G., Fickie K.D., “A fast numerical method for iso-thermal resin transfer mold filling”. Int. J. Numer. Methods Eng. 39, 1405-1417, 1996.
  • [15] Maliska C.R., Raithby G.D., “Calculating 3D fluid flows using orthogonal grids”, in: Proceedings of the Third International Conference on Numerical Methods in Laminar and Turbulent Flows, Seattle, WA, 1986.
  • [16] Maliska C.R., de Vasconcellos J.F.V., “An unstructured finite volume procedure for simulating flows with moving fronts”. Comput. Meth. Appl. Mech. Eng. 182, 401-420, 2000.
  • [17] Salinas C.H., Chavez, C.A., Gatica Y., Ananias R.A., “Simulation of wood drying stresses using CVFEM”. Lat. Am. Appl. Res. 41, 23-30, 2011.
  • [18] Subbiah S., Trafford D.L., Güceri S.I., “Non-isothermal flow of polymers into two di-mensional, thin cavity molds: a numerical grid approach”. Int. J. Heat Mass Tran. 32, 415-439, 1989.
  • [19] Swaminathan C.R., Voller V.R., “A time-implicit filling algorithm”. Appl. Math. Mod-ell. 18, 101-108, 1994.
  • [20] Usmani A.S., Cross J.T., Lewis R.W., “A finite element model for the simulation of mould filling in metal casting and the associated heat transfer”. Int. J. Numer. Methods Eng. 35, 787-806, 1992.
  • [21] Van Wachem B.G.M., Almstedt A.E., “Methods for multiphase computational fluid dynamics”. Chem. Eng. J. 96, 81-98, 2003.
Como citar:

Salinas, C.H.; Vasco, D.A.; Moraga, N.O.; "TWO-DIMENSIONAL NON NEWTONIAN FLUID INJECTION MOULDING FILLING IMPROVED WITH A CVFEM/VOF METHOD", p. 4098-4112 . In: In Proceedings of the 10th World Congress on Computational Mechanics [= Blucher Mechanical Engineering Proceedings, v. 1, n. 1]. São Paulo: Blucher, 2014.
ISSN 2358-0828, DOI 10.5151/meceng-wccm2012-19736

últimos 30 dias | último ano | desde a publicação