fevereiro 2015 vol. 1 num. 2 - XX Congresso Brasileiro de Engenharia Química

Artigo - Open Access.

Idioma principal

THEORETICAL EVALUATION OF MASS TRANSFER COEFFICIENTS IN SOLUTION CRYSTALLIZATION

SILVA, J. M. F.; SILVA, J. P.; SOUZA, T. P. C.; LIRA, C. P. G.; SANTOS, B. F.;

Artigo:

Mass transfer is an important phenomenon in most chemical processes and studies involving determination of mass transfer coefficients are necessary for a better estimation of equipment performance. Solid-liquid mass transfer coefficients in stirred systems have received substantial attention in the past due to their practical applications. In contrast, little information is available on solid-liquid mass transfer in crystallization systems, despite the importance of crystallization. In this work, an expression for the mass transfer coefficients in solution crystallization, has been developed based on the Stefan problem formulation. The model is able to predict a finite mass transfer coefficient when the layer thickness vanishes. The obtained mass transfer coefficients agree with previously reported experimental data.

Artigo:

Palavras-chave:

DOI: 10.5151/chemeng-cobeq2014-1821-17378-143639

Referências bibliográficas
  • [1] Berthoud, A. Theorie de la formation des faces d’um crystal, J. Chim. Phys., Vol. 10, p-624, (1912). Bird, R. B. Stewart, W. E. and Lightfoot, E. N., Transport Phenomena, 2nd ed., John Wiley Andamp; Sons, New York (2007). Clapeyron, P.B. and G.Lamé, memory on the solidification by cooling of a solid sphere (in French), ann. Chem.Phys.,47, 250-256, 183
  • [2] Chen J., Sarma B., Evans J. M. B., Myerson A. S., Pharmaceutical Crystallization. Crystal Growth Andamp; Design, 11, p887-895, (2011). Louhi-Kultanen M., Kallas .J, Partanen J., Sha Z., Oinas P., Palosaari S., The influence of multicomponent diffusion on crystal growth in electrolyte solutions, Chemical Engineering Science, 56 (11): 3505-3515, (2001). Martins P. M and Rocha, F., The role of diffusional resistance on crystal growth: Interpretation of dissolution and growth rate data, Chemical Engineering Science 61 (17): 5686-5695 SEP (2006). Área temática: Engenharia das Separações e Termodinâmica 7Marc, R., über die kristallisation aus wässerrigen lösungen, Z. Phys. Chem., vol. 61, 385; vol-67, 470; vol-73, 685, (1908, 1909 and 1910). Su J., Yang G., Zhou T., Gao X., Wang K., Fu Q., Enhanced crystallization behaviors of poly(ethylene terephthalate) via adding expanded graphite and poly(ethylene glycol), Colloid and Polymer Science, v291 i4, p911-917, (2013). Mersmann, A., Design of Crystallizers, Chem. Eng. Process., 23, 213-228, (1988). Miozzo, L., Horowitz G., Yassar A., Surface engineering for high performance organic electronic devices: the chemical approach Journal of Materials Chemistry, v 20, 2513 (2010) Mullin, J. W., Crystallization, 2nd ed. Butterworths, London, (1972). Nienov A. W., The Mixer as a reactor: liquid/solids systems. In Harnby N., M. F. Edwards and A.W. Nienov. Mixing in the process industries, 2nd edition, Butteworth Andamp; Co, London, UK, (1992). Norrish, R. S.,Selected Tables of physical properties of sugar solutions, Scientific and Technical Surveys, The British Food Manufacturing Industries Research Association, Number 51, (1967). Sahin O, Ozdemir M, Genli N., Effect of impurities on crystal growth rate of ammonium pentaborate, Journal of Crystal Growth, 260 (1-2): 223-231,(2004). Silva, José Marcos F.; Lopes, Carlos E.; Antonio J. A. Meirelles and Wolf-Maciel, M. R., Stefan’s problem applied to solution crystallization, Journal of Chemical Engineering of Japan, Vol. 39, No. 9, pp. 940-947, (2006). Huang W., Yu J., Yu X., Li Y., Zeng H., Performance enhancement of organic thin-film transistors with improved copper phthalocyanine crystallization by inserting ultrathin pentacene buffer. Thin Solid Films, v520 i21 p6677-6680, (2012). Stefan, J., On some problems of the heat transfer theory (in Germain),Wien Akad. Mat. Natur.,98, 616-634, 1889.
  • [3] Valeton, J.J.P., Wachstum und auflÖsung der kristalle, Z. Kristallogr., vol.-59, p-135, (1923). Van der Gun, M. A., Bruinsma, O. S. L., Jansens PJ. Purification of polycrystalline -caprolactam particles, Chemical Engineering Science, 60 (1): 201-211, (2005). Washburn, E.W., International critical tables of numerical data, physics, chemistry and technology Ed. by Edward W. Washburn, McGraw-Hill, New York, Vol. 5, p. 63, (1929). Zhao J., Miao H., Duan L., Kang Q., He L. H., The mass transfer process and the growth rate of NaCl crystal growth by evaporation based on temporal phase evaluation, Opt. Lasers Eng.50(4), 540–546 (2012).
Como citar:

SILVA, J. M. F.; SILVA, J. P.; SOUZA, T. P. C.; LIRA, C. P. G.; SANTOS, B. F.; "THEORETICAL EVALUATION OF MASS TRANSFER COEFFICIENTS IN SOLUTION CRYSTALLIZATION", p. 16109-16116 . In: Anais do XX Congresso Brasileiro de Engenharia Química - COBEQ 2014 [= Blucher Chemical Engineering Proceedings, v.1, n.2]. São Paulo: Blucher, 2015.
ISSN 2359-1757, DOI 10.5151/chemeng-cobeq2014-1821-17378-143639

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações