Full Article - Open Access.

Idioma principal

PULSATILE FLOW IN CORONARY BIFURCATIONS FOR DIFFERENT STENTING TECHNIQUES

García, J.; Manuel, F.; Doce, Y.; Castro, F.; Crespo, A.; Goicolea, J.; Fernández, J. A.;

Full Article:

The objective of this work is to analyze the local hemodynamic changes caused in a coronary bifurcation by three different stenting techniques: simple stenting of the main vessel, simple stenting of the main vessel with kissing balloon in the side branch and culotte. To carry out this study an idealized geometry of a coronary bifurcation is used, and two bifurcation angles, 45º and 90º, are chosen as representative of the wide variety of real configurations. In order to quantify the influence of the stenting technique on the local blood flow, both numerical simulations and experimental measurements are performed. First, steady simulations are carried out with the commercial code ANSYS-Fluent, and then, experimental measurements with PIV (Particle Image Velocimetry) obtained in the laboratory are used to validate the numerical simulation. The steady computational simulations show a good overall agreement with the experimental data. Second, pulsatile flow is considered to take into account the transient effects. The time averaged wall shear stress, oscillatory shear index and pressure drop obtained numerically are used to compare the behavior of the stenting techniques.

Full Article:

Palavras-chave: stent, coronary bifurcation, computational fluid dynamics, wall shear stress,

Palavras-chave:

DOI: 10.5151/meceng-wccm2012-18404

Referências bibliográficas
  • [1] Al Suwaidi, J., P.B. Berger, C.S. Rihal, K.N. Garratt, M. R. Bell, H.H. Ting, J.F. Bresnahan, D.E. Grill and D.R. Holmes, (2000). Inmediate and long-term outcome of intracoronary stent implantation for true bifurcation lesions. J. Am. Coll. Cardiol. 35:929-936.
  • [2] Balossino, R., Gervaso, F., Migliavacca, F. and Dubini, G. (2008). Effects of different stent designs on local hemodynamics in stented arteries. Journal of Biomechanics, 41; pp. 1053-1061.
  • [3] Benard, N., Coisne, D., Donal, E. and Perrault, R. 200 Experimental study of laminar blood flow through an artery treated by a stent implantation: characterization of intra-stent wall shear stress. Journal of Biomechanics 36, 991-998.
  • [4] Berry, J.L., Santamarina, A., Moore, J.E. Jr., Roychowdhury, S. and Routh, W.D. (2000). Experimental and Computational Flow Evaluation of Coronary Stents. Annals of Biomedical Engineering, Vol. 28, pp. 386-398.
  • [5] Charonko, J., Karry, S., Schmieg, J., Prabhu, S. and Vlachos, P. (2009). In vitro, Time- Resolved PIV Comparison of the Effect of Stent Design on Wall Shear Stress. Annals of Biomedical Engineering, vol. 37, No. 7, pp. 1310-1321.
  • [6] Deplano, V., Bertolotti, C. and Barragan, C. (2004). Three-dimensional numerical simulations of physiological flows in a stented coronary bifurcation. Medical Andamp; Biological Engineering Andamp; Computing, Vol. 42, pp. 650-659.
  • [7] Garcia, J., Crespo, A., Goicolea, J., Sanmartín, M. and García, C. (2006). Study of the evolution of the shear stress on the restenosis after coronary angioplasty. Journal of Biomechanics, 39, pp. 799-805.
  • [8] Gnasso, A., Irace, C., Carallo, C., De Franceschi, M.S., Motti, C., Mattioli, P.L., Pujia, A., 1997. In vivo association between low wall shear stress and plaque in subjets with asymmetrical carotid atherosclerosis. Stroke 28 (5), 993-99
  • [9] Ku, D.N., Giddens, D.P., Zarins, C.K., Glagov, S., (1985). Pulsatile flow and atherosclerosis in the human carotid bifurcation: positive correlation between plaque location and low and oscillating shear stress. Atherosclerosis 5 (3), 293-302.
  • [10] Moore, J.E., Xu, C., Glagov, S., Zarins, C.K., Ku, D.N., 1994. Fluid wall shear stress measurements in a model of the human abdominal aorta: oscillatory behavior and the relationship to atherosclerosis. Atherosclerosis 110, 225-240.
  • [11] Shaaban, A. M., Duerinckx, A.J., 2000. Wall shear stress and early atherosclerosis: a review. AJR American Journal of Roentgenol 174 (6), 1657-1665.
  • [12] Wentzel, J. J., Whelan, M.D., van der Giessen, W.J., van Beusekom, H.M., Andhyswara, I., Serruys, P.W., Slager, C.J., Krams, R., 2000. Coronary stent implantation changes 3-D vessel geometry and 3-D shear stress distribution. Journal of Biomechanics 33, 1287-1295.
  • [13] Wentzel, J. J., Gijsen, F.J.H., Stergiopulos, N., Serruys, P.W., Slager, C.J. Krams, R., 2003. Shear stress, vascular remodeling and neointimal formation. Journal of Biomechanics 36, 681-688.
  • [14] Williams, A.R., Koo, B.K., Gundert, T.J., Fitzgerald, P.J. and LaDisa, J.F. 2010. Local hemodynamic changes caused by main branch stent implantation and subsequent virtual side branch balloon angioplasty in a representative coronary bifurcation. J. Appl. Physiol., 109:532-540.
  • [15] Zarins, C.K., Giddens, D.P., Bharadvaj, B.K., Sottiurai, V.S., Mabon, R.F., Glagov,S., 1983. Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circulation Research, 53 (4), 502-514.
Como citar:

García, J.; Manuel, F.; Doce, Y.; Castro, F.; Crespo, A.; Goicolea, J.; Fernández, J. A.; "PULSATILE FLOW IN CORONARY BIFURCATIONS FOR DIFFERENT STENTING TECHNIQUES", p. 1382-1394 . In: In Proceedings of the 10th World Congress on Computational Mechanics [= Blucher Mechanical Engineering Proceedings, v. 1, n. 1]. São Paulo: Blucher, 2014.
ISSN 2358-0828, DOI 10.5151/meceng-wccm2012-18404

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações