Fevereiro 2015 vol. 1 num. 2 - XX Congresso Brasileiro de Engenharia Química

Artigo - Open Access.

Idioma principal

PREDICTION OF THREE COMPONENT GAS ADSORPTION WITH IAST AND LANGMUIR

OLIVEIRA, L. H. de ; MENEGUIN, J. G. ; SILVA, E. A. da ; BARROS, M. A. S. D. de ; ARROYO, P. A. ; GRAVA, W. M. ; NASCIMENTO, J. F. do ;

Artigo:

Purification of natural gas is important to avoid pipe corrosion and improve its specific heat. This operation is mainly focused on hydrogen sulfide and carbon dioxide removal from methane, and adsorption is one of the proposed techniques. In this work, experimental adsorption isotherms for CH4, CO2 or H2S, in NaY zeolite, at 30°C were determined and the Ideal adsorption solution theory (IAST) and Langmuir adsorption isotherm were used to predict the adsorption behavior of the gas mixture composed by CH4 + CO2 + H2S, at 1, 20 or 50 bar. According to Langmuir equation, the maximum adsorbed capacity was approximately 3.77, 7.06, and 7.02 mol/kg, for CH4, CO2, and H2S, respectively. The calculated values of distribution coefficient (K) and selectivity (S) indicate zeolite adsorbs more H2S than CO2. Also, K values are increased with CH4 content, although S values are greater for high H2S concentration.

Artigo:

Palavras-chave:

DOI: 10.5151/chemeng-cobeq2014-1951-16700-162620

Referências bibliográficas
  • [1] ALONSO-VICARIO, A.; OCHO-GÓMEZ, J. R.; GIL-RÍO, S.; GÓMEZ-JIMÉNEZ-ABERASTURI, O.; RAMÍREZ-LÓPEZ, C. A.; TORRECILLA-SORIA, J.; DOMÍNGUEZ, A. Purification and upgrading of biogas by pressure swing adsorption on synthetic and natural zeolites. Micropor. Mesopor. Mat., v. 134, p. 100-107, 2010.
  • [2] BANDOSZ, T. J. Effect of pore structure and surface chemistry of virgin activated carbons on removal of hydrogen sulfide. Carbon, v. 37, p. 483–491, 1999.
  • [3] CHAEMCHUEN, S.; KABIR, N. A.; ZHOU, K.; VERPOORT, F. Metal–organic frameworks for upgrading biogas via CO2 adsorption to biogas green energy. Chem. Soc. Rev., v. 42, p. 9304-9332, 201
  • [4] CRESPO, D.; QI, G.; WANG, Y.; YANG, F. H.; YANG, R. T. Superior Sorbent for Natural Gas Desulfurization. Ind. Eng. Chem. Res., v. 47, p. 1238-1244, 2008.
  • [5] CRUZ, A. J.; PIRES, J.; CARVALHO, A. P.; de CARVALHO, M. B. Physical Adsorption of H2S Related to the Conservation of Works of Art: The Role of the Pore Structure at Low Relative Pressure. Adsorption, v. 11, p. 569-576, 200
  • [6] DREISBACH, F., LÖSCH, H. W., HARTING, P. Highest Pressure Adsorption Equilibria Data: Measurement with Magnetic Suspension Balance and Analysis with a New Adsorbent/Adsorbate-Volume. Adsorption, v. 8, p. 95-109, 2002.
  • [7] KELLER, J., STAUDT, R. Gas Adsorption Equilibria, Springer Science, 2005.
  • [8] KOYUN, T.; KUNDUZ, M.; OZTOP, H. F.; UCGUL, I. Comparison of purification processes of natural gas obtained from different regions in the world. J. Nat. Gas Chem., v. 21, p. 61-68, 2012.
  • [9] KUMAR, P.; SUNG, C.-Y.; MURAZA, O.; COCOCCIONI, M.; HASHIMI, S. A.; MCCORMICK, A.; TSAPATSIS, M. H2S adsorption by Ag and Cu ion exchanged faujasites. Micropor. Mesopor. Mat., v. 146, p. 127–133, 2011.
  • [10] KUNZ, O.; WAGNER, W. The GERG-2008 Wide-Range Equation of State for Natural Gases and Other Mixtures: An Expansion of GERG-2004. J. Chem. Eng. Data, v. 57, p. 3032−3091, 2012 LI, B.; DUAN, Y.; LUEBKE, D.; MORREALE, B. Advances in CO2 capture technology: A patent review. Applied Energy, v. 102, p. 1439-1447, 2013.
  • [11] MAUGÉ, F.; SAHIBED-DINE, A.; GAILLARD, M.; ZIOLEK, M. Modification of the Acidic Properties of NaY Zeolite by H2S Adsorption – An Infrared Study. J. Catal., v. 207, p. 353-360, 2002.
  • [12] Área temática: Engenharia das Separações e Termodinâmica 7MAURIN, G.; BELMABKHOUT, Y.; PIRNGRUBER, G.; GABEROVA, L.; LLEWELLYN, P. CO2 adsorption in LiY and NaY at high temperature: molecular simulations compared to experiments. Adsorption, v. 13, p. 453-460, 2007.
  • [13] MELO, D. M. A.; de SOUZA. J.R.; MELO, M. A. F.; MARTINELLI, A. E.; CACHIMA, G. H. B.; CUNHA, J. D. Evaluation of the zinox and zeolite materials as adsorbents to remove H2S from natural gas. Colloid. Surface A, v. 272, p. 32-36, 2006.
  • [14] MYERS, A. L.; PRAUSNITZ, J. M. Thermodynamics of mixed gas adsorption. AIChE J., v. 11, p. 121-127.
  • [15] PENG, D. Y.; ROBINSON, D. B. A new two-constant equation of state. Ind. Eng. Chem. Fund., v. 15, p. 59-64, 1976.
  • [16] RATSANAMY, C.; WAGNER, J. P.; SPIVEY, S.; WESTON, E. Removal of sulfur compounds from natural gas for fuel cell applications using a sequential bed system. Catal. Today, v. 198, p. 233-238, 2012.
  • [17] RIOS, R. B.; STRAGLIOTTO, F. M.; PEIXOTO, H. R.; TORRES, A. E. B.; BASTOS-NETO, M.; AZEVEDO, D. .C. S.; CAVALCANTE JR., C. L. Studies on the adsorption behavior of CO2-CH4 mixtures using activated carbon. Braz. J. Chem. Eng., v. 30, p. 939-951, 2013.
  • [18] SCHELL, J.; CASAS, N.; PINI, R.; MAZZOTTI, M. Pure and binary adsorption of CO2, H2, and N2 on activated carbon. Adsorption, v. 18, p. 49-65, 2012.
  • [19] WATABE, T.; YOGO, K. Isotherms and isosteric heats of adsorption for CO2 in amine-functionalized mesoporous silicas. Sep. Purif. Technol., v. 120, p. 20-23, 2013.
Como citar:

OLIVEIRA, L. H. de; MENEGUIN, J. G.; SILVA, E. A. da; BARROS, M. A. S. D. de; ARROYO, P. A.; GRAVA, W. M.; NASCIMENTO, J. F. do; "PREDICTION OF THREE COMPONENT GAS ADSORPTION WITH IAST AND LANGMUIR", p. 16272-16279 . In: Anais do XX Congresso Brasileiro de Engenharia Química - COBEQ 2014 [= Blucher Chemical Engineering Proceedings, v.1, n.2]. São Paulo: Blucher, 2015.
ISSN 2359-1757, DOI 10.5151/chemeng-cobeq2014-1951-16700-162620

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações