Full Article - Open Access.

Idioma principal

POROELASTIC BEHAVIOR OF CRACKED ROCKS AS HOMOGENIZED MEDIA

Maghous, S.;

Full Article:

The formulation of macroscopic poroelastic behavior of a cracked rock is investigated within the framework of a micro-macro approach. The micro-cracks are modeled as interfaces and their behavior is modeled by means of generalized poroelastic state equations. Starting from Hill´s lemma extended for a medium with cracks and extending the concept of strain concentration to relate the crack displacement jump to macroscopic strain, the overall poroelastic constitutive equations for the cracked rock are formulated. The analysis emphasizes the main differences and similarities of the resulting behavior with respect to that characterizing ordinary porous media. It is shown that, unlike ordinary porous media, conditions on the poroelastic parameters of cracks are required for the macroscopic drained stiffness to entirely define the poroelastic behavior. This is achieved, for instance, if the crack network is characterized by a unique Biot coefficient. Extension of the analysis to non-linear poroelasticity is also outlined. Finally, the theoretical formulation is applied to a particular case of cracked rock for which explicit expressions of the overall poroelastic parameters are derived.

Full Article:

Palavras-chave: Cracked rock, Poroelasticity, Micromechanics.,

Palavras-chave:

DOI: 10.5151/meceng-wccm2012-16812

Referências bibliográficas
  • [1] Auriault J.L., Sanchez-Palencia E., “Etude du comportement macroscopique d’un milieu poreux saturé déformable“. J. Méc. 16, 575-603, 1977.
  • [2] Bandis C.S., Lumsden A.C., Barton N.R., “Fundamentals of rock joint deformation”. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 20, 249-268, 1983.
  • [3] Bart M., Shao J.F., Lydzba D., Haji-Sotoudeh M., “Coupled hydromechanical modeling of rock fractures under normal stress“. Can. Geotech. J. 41, 686-697, 2004.
  • [4] Barton N., Bandis S., Bakhtar K., “Stength, deformation and conductivity coupling of rock joints“. Int. J Rock Mech. Min. Sci. 22, 121-140, 1985.
  • [5] Barton N.R., Quadros E.F., “Joint aperture and roughness in the prediction of flow and groutability of rock masses“. Int. J. Rock Mech. Min. Sci. 34, 700-701, 1997.
  • [6] Budiansky B., O’Connell R.J., “Elastic moduli of cracked solid“. Int. J. Solids Struct. 12, 81-97, 197
  • [7] Deudé V., Dormieux L., Kondo D., Maghous S., “Micromechanics approach to nonlinear poroelasticity: application to cracked rocks“. J. Eng. Mech. ASCE 128, 848-855, 2002.
  • [8] Dormieux L., Maghous S., Kondo D., Shao J.F., “Macroscopic poroelastic behavior of a jointed rock“. Proceedings of the 2nd Biot conference, Poromechanics II, Grenoble, 179-183, 2002.
  • [9] Dormieux L., Kondo D., Ulm F.J., “A micromechanical analysis of damage propagation in fluid-saturated cracked media“. Comptes Rendus Mécanique 334, 440-446, 2006.
  • [10] Dormieux L., Kondo D., Ulm F.J., “Microporomechanics“. Wiley, 2006.
  • [11] Goodman R.E., “Methods of geological engineering in discontinuous rocks”. West Publishers, 1976.
  • [12] Hill R., “The essential structures of constitutive laws for metal composites and polycrystals“. J. Mech. Phys. Solids 15, 79-95, 1967.
  • [13] Kachanov M., “A microcrack model for rock inelasticity – part I: frictional sliding on microcracks“. Mech. Mater. 1, 19-27, 1982.
  • [14] Kachanov M., “A microcrack model for rock inelasticity – part II: propagation of microcracks“. Mech. Mater. 1, 29-41, 1982.
  • [15] Mandel J., “Plasticité classique et viscoplasticité“. CISM Lectures Notes 97, Springer, 1972.
  • [16] Mura T., “Micromechanics of defects in solids”. Martinus Nijhoff Publishers, 1987.
  • [17] Nemat-Nasser S., Horii H., “Micromechanics: overall properties of heterogeneous materials“. North-Holland, 1993.
  • [18] Oda M., “An equivalent continuum model for coupled stress and fluid flow analysis in jointed rock masses“. Water Resources Research 22, 1845-1856, 1986.
  • [19] Pensée V., Kondo D., Dormieux L., “Micromechanical analysis of anisotropic damage in brittle materials“. J. Eng. Mech. ASCE 128, 889-897, 2002.
  • [20] Tsang Y.W., Witherspoon P.A., “Hydromechanical behavior of a deformable rock fracture subject to normal stress”. J. Geophys. Research 86, 9287-9298, 1980.
  • [21] Zaoui A. Continuum micromechanics: survey. J. Eng. Mech. ASCE 128, 808-816, 2002.
Como citar:

Maghous, S.; "POROELASTIC BEHAVIOR OF CRACKED ROCKS AS HOMOGENIZED MEDIA", p. 467-484 . In: In Proceedings of the 10th World Congress on Computational Mechanics [= Blucher Mechanical Engineering Proceedings, v. 1, n. 1]. São Paulo: Blucher, 2014.
ISSN 2358-0828, DOI 10.5151/meceng-wccm2012-16812

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações