Full Article - Open Access.

Idioma principal


Fernández, U.; Réthoré, P.-E.; Sørensen, N. N.; Velte, Clara M.; Zahle, F.; Egusquiza, E.;

Full Article:

A detailed study of the device angle dependency of a single vortex generator (VG) is presented in this paper. A single Vortex Generator on a test section wall case, with four different positions of the device angle to the incoming flow, has been designed and solved by computational methods. The computational fluid dynamic (CFD) simulations have been com-pared with a wind tunnel experiment, where the corresponding parametric study was per-formed over a single vane mounted on the test section wall in low-speed wind tunnel. In this experiment the flow was recorded using Stereoscopic Particle Image Velocimetry (S-PIV) in cross-planes at various positions downstream of the vane. The main goal of this article is to study the angle dependency of a single VG mounted on a test section wall; for this purpose CFD simulations have been carried out and compared with a wind tunnel experiment and an analytical model.

Full Article:

Palavras-chave: Vortex Generators, CFD, computational fluid dynamic, parametric study,


DOI: 10.5151/meceng-wccm2012-19160

Referências bibliográficas
  • [1] Anderson B. H., “The aerodynamic characteristics of vortex ingestion for the fla-18 inlet duct”, NASA Lewis Research Center, Cleveland, Ohio 44135. 29th Aeroespace Sciences Meeting, Nevada, January 199
  • [2] Taylor, H. D. “The elimination of diffuser separation by vortex generators”. Research De-partment Report No. R-4012-3. United Aircraft Corporation, East Hartford, Connecticut, 1947.
  • [3] Taylor, H. D. “Application of vortex generator mixing principles to diffusers”. Research Department Concluding Report No. R-15064-5. United Aircraft Corporation, East Hartford, Connecticut, 1948.
  • [4] Taylor, H. D. “Summary report on vortex generators”. Research Department Report No. R-05280-9. United Aircraft Corporation, East Hartford, Connecticut, 1950.
  • [5] Wentz W.H. jr, “Effectiveness of spoilers on the GA(W)-1 airfoil with a high performance Fowler flap” NASA CR-2538 May 197
  • [6] Rao D. M., Kariya TT. „Boundary-layer submerged vortex generators for separation con-trol-an exploratory study”. AIAA Paper 88-3546-CP, AIAA/ASME/SIAM/APS 1st National Fluid Dynamics Congress, Cincinnati, OH, July 25–28, 1988.
  • [7] Lin, J.C. Andamp; Howard, F.G. “Turbulent flow separation control through passive techniques”. AIAA 2nd Shear Flow Conference, March 13- 16 1989, Tempe AZ, AIAA Paper 89-0976.
  • [8] Kerho M., S. Huctcherson, R. F. Blackwelder and R. H. Liebeck. “Vortex Generators used to control laminar separation bubbles”. Journal of Aircraft, 30(3) 315-319, 1993.
  • [9] Lin, S. K. Robinson and R. J. McGhee. “Separation Control on high-lift airfoils via micro vortex generators”. Journal of aircraft, 27(5):503-507, 1994.
  • [10] Wendt, B. J. “Parametric study of vortices shed from airfoil vortex generators”. AIAA Journal 42, 2185_2195, 2004.
  • [11] van Rooij, R. P. J. O. M. Andamp; Timmer, W. A. “Roughness Sensitivity Considerations for Thick Rotor Blade Airfoils”. AIAA-paper 2003-0350.
  • [12] Schubauer G. B., Spangenber W. G. “Forced mixing in boundary layers”. J Fluid Mech, 1 1960;8:10–32. 11
  • [13] Bragg M. B. Gregorek G.M. “Experimental study of airfoil performance with vortex generators”. Journal of aircraft; 24(5):305–9, 1987.
  • [14] Øye, S. “The Effect of Vortex Generators on the Performance of the ELKRAFT 1000 kW Turbine”. 9th IEA Symposium on Aerodynamics of Wind Turbines, Stockholm, Sweden, ISSN 0590_8809, 1995.
  • [15] Michelsen J.A. “Basis3d- a platform for development of multiblock pde solvers”. Tech-nical Report AFM 94-06, Technical University of Denmark, Dept. of Mechanical Engineer-ing, 1994.
  • [16] Sørensen N. N. “General purpose flow solver applied to flow over hills”. Technical Re-port Risoe-R-827(EN), Risoe National Laboratory, 1995.
  • [17] Velte, C.M., Hansen, M. O. L., Okulov, V. L., ”Helical structure of longitudinal vortices embedded in turbulent wall-bounded flow”, Journal of Fluid Mechanics., 619, 167 – 177, 2009.
  • [18] Velte C. M. “Characterization of Vortex Generator Induced Flow”. PhD Thesis, Techni-cal University of Denmark, Lyngby, Denmark 2009.
  • [19] Fernández, U., Réthoté, P.-E., Sørensen, N.N., Velte, C.M., Zahle, F., Egusquiza, E., “Comparison of Four Different Models of Vortex Generators”, Proceedings of EWEA 2012.
  • [20] Menter F.R.., ”Zonal Two equation k-? Turbulence Model for aerodynamic flows”, AIAA Journal 932906, 1993.
  • [21] Velte, C.M.,”A vortex generator flow model based on self-similarity”, AIAA Journal, accepted for publication.
  • [22] Khosla P.K. and Rubin S.G. “A diagonally dominant second-order accurate implicit scheme”, Computer Fluids, 207-209, 1974.
Como citar:

Fernández, U.; Réthoré, P.-E.; Sørensen, N. N.; Velte, Clara M.; Zahle, F.; Egusquiza, E.; "PARAMETRIC STUDY OF THE DEVICE ANGLE DEPENDENCY OF A SINGLE VORTEX GENERATOR ON A FLAT PLATE", p. 3080-3094 . In: In Proceedings of the 10th World Congress on Computational Mechanics [= Blucher Mechanical Engineering Proceedings, v. 1, n. 1]. São Paulo: Blucher, 2014.
ISSN 2358-0828, DOI 10.5151/meceng-wccm2012-19160

últimos 30 dias | último ano | desde a publicação