Full Article - Open Access.

Idioma principal

PARALLEL COMPUTING OF FLUID-STRUCTURE COUPLED ANALYSIS USING SUPG/PSPG AND ENRICHED FREE MESH METHOD

NAGAOKA, Shinsuke; NAKABAYASHI, Yasushi; YAGAWA, Genki;

Full Article:

The paper proposes a new analysis method for fluid-structure problems, which has nodal consistency at the fluid-structure interface and its calculation efficiency and accuracy are high. The incompressible viscous fluid analysis method using the P1-P1 element based on SUPG/PSPG developed by Tezduyar et al. is used for fluid analysis, while the high-accuracy analysis method based on EFMM developed by the authors is adopted for structure analysis. As the common feature of these methods, it is possible to analyze a fluid or a structure rather accurately by using the first order triangular of tetrahedral elements. In addition, variables are exchanged exactly at the common nodes on the fluid-structure boundary without deteriorating accuracy and calculation efficiency due to the interpolation of variables between nodes. The Present method is applied to a fluid-structure interaction problem by simulating the deformation of a red blood cell. At this time, to solve a bottleneck of EFMM that is needed a lot of time to make a stiffness matrix, we introduced a parallel processing to EFMM.

Full Article:

Palavras-chave: Fluid-Structure coupled analysis, Enriched Free Mesh Method, SUPG/PSPG stabilized FEM, Parallel processing,

Palavras-chave:

DOI: 10.5151/meceng-wccm2012-19119

Referências bibliográficas
  • [1] Zienkiewicz OC, Taylor RL., “The finite element method". 5th edn. Elsevier, Amsterdam. 2000.
  • [2] Hugher TJR. "The finite element method: linear static and dynamic finite element analysis". Prentice Hall, Newyork. 1987.
  • [3] Zienkiewicz OC, Taylor RL, Nifhiarasu P., "The finite element method for fluid dynamics". 6th edn. Elsevier, Amsterdam. 2005.
  • [4] Brooks AN, Hughes TJR., "Streamline upwind/Petrov Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier- Stokes equations". Comput Method Appl Mech Eng 32:199-259. 1982.
  • [5] Tezduyar TE. "Stabilized finite element formulations for incompressible flow incompressible flow computations". Adv Appl Mech 28:1-44. 1992.
  • [6] Tezduyar TE, Mittal S, Ray SE, Shih R., "Incompressible flow computations with stabilized biliner and linear equal-order-interpolotion velocity-pressure elements". Comput Methods Appl Mech Eng 95:221-242. 1992.
  • [7] Tezduyar TE. "Computation of Moving Boundaries and Interfaces and Stabilization Parameters". Int J Numer Methods Fluids 43:555-575. 2003.
  • [8] Tezduyar TE, Sathe S, Keedy R, Stein K. "Space-time finite element techniques for computation of fluid-structure interactions". Comput Methods Appl Mech Eng 195:2002- 2027 . 2006.
  • [9] Texduyar TE, Sathe S., "Modeling of fluid-structure interactions with the space-time finite elements: solution techniques". Int J Numer Methods Fluids 54:855-900. 2007.
  • [10] Tezduyar TE, Sathe S, Pausewang J, Schwaab M, Christropher J, Crabtree J., "Interface projection techniques for fluid-structure interaction modeling with moving-mesh methods". Comput Mech 43:39-49. 2008
  • [11] Tezduyar TE, Takizawa K, Moorman C, Wright S, Christopher J., "Multiscale sequentially-coupled arterial FSI technique", Comput Mech 46:17-29. 2010.
  • [12] Takizawa K, Moorman C, Wright S, Christopher J, Tezduyar TE., "Wall shear stress calculations in space-time finite element computation of arterial fluid-structure interactions". Comput Mech 46:31-41. 2010.
  • [13] Takizawa K, Tezduyar TE., "Multiscale space-time fluid-structure interaction techniques". Comput Mech. doi:10.1007/s00466-011-0571-z. 2011.
  • [14] Yagawa G, Matsubara H., "Enriched free mesh method : an accuracy improvement for node-based fem, computational plasticity". Comput Methods Appl Sci 7:207-219. 2007.
  • [15] Yagawa G, Yamada T., "Free mesh method a new meshless finite element method", Comput Mech 18:383-386. 1996.
  • [16] Yagawa G, Yamada T., "Performance of Parallel computing of free mesh method". In:Proceedings of the 45th National Congress of Theroretical Andamp; Applied Mechanics. 1996.
  • [17] Berg M, Cheong O, Kreveld M, Overmars M., "Computational geometry : algorithm and applicatioins. 3rd edn. Springer, New York. 2008.
  • [18] Inaga M, Fujisawa T, Okuda Y, Yagawa G., "Local mesh generation algorithm for free mesh method". The Japan Society of Mechanical Engineers[No.02-9] Dynamic and Desigh Conference . 2002.
  • [19] Zienkiewicz OC, Taylor RL., "Matrix finite element method I (Recision new publication)", Kagaku Gijutsu Shuppan, Inc. 1996.
  • [20] Newmark NM., "A method of computation for structural dynamics, civil engineering". Trans ASCE 127 : 1406-1435. 1962
  • [21] Franca LP, Frey SL., "Stabilized finite element methods II. The incompressible Navier- Stokes equations". Comput Methods Appl Mech Eng 99:209-233. 1992. 1406-1435. 1962
  • [22] Zhang S., "GPBi-CG generalized product-type methods based on Bi-CG for solving non-symmetriclinear system". SIAM J Sci Stat Comput 18:537-551. 1997
  • [23] Thuthu M, Fujino S,. "Stability of GPBiCG AR method based on minimization of associate residual". ASCM 5081:108-120. 2008
  • [24] Ghia U, Ghia K.N, Shin C.T., "High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. Journal of computational Physics,48, 387-411. 1982.
  • [25] Tanaka M, Sakamoto T, Sugawara S, Nagajima H, Katahira Y, Ohtsuki S, Kanai H., "Blood flow structure and dyanmics, and ejection mechanism in the left ventricle". J Cardiol 52:86-101 . 2008.
  • [26] Kanno H, Morimoto M, Fujii H, Tsujimura T, Asai H, Noguchi T, Kitamura Y, Miwa S., "Primary structure of marine red blood cell-type Pyruvate Kinase (PK) and molecular characterization of PK deficiency identified in the CBA strain". Blood 86:3205-3210. 1995.
  • [27] Belytschko T, Flanagan DF, Kennedy JM., "Finite element method with user-controlled meshes for fluid-structure interactions". Comput Methods Appl Mech Eng 33:689-723. 1982.
  • [28] Huetra A, Liu WK., "Viscous flow with large free surface motion". Comput Methods Appl Mech Eng 69 : 277-324. 1988.
  • [29] Huetra A, Liu WK., "Viscous flow structure interaction". J press Vessel Technol 110:15-21. 1988.
  • [30] Nitikipaiboon C, Bathe KJ., "An arbitrary Lagrangian-Eulerian velocity potential formulation for fluid-structure interaction". Comput Struct 47:871-891. 1993.
  • [31] Bathe KJ, Zhang H, Wang MH., "A mixed displacement-based finite element formulation for acoustic fluid-structure interaction". Comput Struct 56 : 225-237. 1995.
  • [32] Bathe KJ, Zhang H, Wang MH., "Finite element analysis of incompressible and compressible fluid flows with free interfaces and structural interactions". Comput Struct 56 : 193-213. 1995.
  • [33] Chakrabarti SK., "Fluid structure interaction and moving boundary problems". WIT Press, Southampton. 2007.
Como citar:

NAGAOKA, Shinsuke; NAKABAYASHI, Yasushi; YAGAWA, Genki; "PARALLEL COMPUTING OF FLUID-STRUCTURE COUPLED ANALYSIS USING SUPG/PSPG AND ENRICHED FREE MESH METHOD", p. 2989-3005 . In: In Proceedings of the 10th World Congress on Computational Mechanics [= Blucher Mechanical Engineering Proceedings, v. 1, n. 1]. São Paulo: Blucher, 2014.
ISSN 2358-0828, DOI 10.5151/meceng-wccm2012-19119

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações