Full Article - Open Access.

Idioma principal

OPTIMIZATION OF THE ELECTRICAL AND MECHANICAL PARAMETERS OF A VIBRATION ENERGY HARVESTER

Clementino, M. A.; Brennan, M. J.; Silva, S. da;

Full Article:

The use of piezoelectric energy harvesting devices to power sensor networks and electronic equipment has become popular research topic. For practical use of the energy converted by these transducers conversion of the alternating current (AC) produced to direct current (DC) is generally required. This is normally done by using rectifier circuits. One important issue to overcome is to be able to design a device able to produce the highest power possible. To optimize the coupled mechanical-electrical system a coupled model is required, including the beam structure, piezoelectric element and rectifier circuit, using the same computational software. Thus, for a specific level of mechanical vibration, the maximum power harvested can be obtained by numerical optimization of the beam and piezoelectric geometry and parameters of resistive load, capacitive filter and diodes. All simulations are carried out using Matlab and the optimization is carried out by a sequential quadratic program (SQP) method. The results show which characteristics are important to consider and to modify in order to improve the performance of the power harvesting device.

Full Article:

Palavras-chave: energy harvesting, power electronics, unified approach, power optimization.,

Palavras-chave:

DOI: 10.5151/meceng-wccm2012-16681

Referências bibliográficas
  • [1] de Marqui Jr. C., Erturk A. and Inman D. J., "An electromechanical finite element model for piezoelectric energy harvester plates". Journal of Sound and Vibration, 327, 9-25, 2009.
  • [2] Elvin N. G. and Elvin A. A., "A general equivalent circuit model for piezoelectric generators". Journal of Intelligent Material Systems and Structures, 20, 3-9, 2008.
  • [3] Elvin N. G. and Elvin A. A., "A coupled finite element-circuit simulation model for analyzing piezoelectric energy generator". Journal of Intelligent Materials Systems and Structures, 20, 587-595, 2009.
  • [4] Franco V. R., Mineto A. T. and Varoto P. S., "Optimization strategies for optimum power generation in piezoelectric energy harvesting from ambient vibrations". In 21st International Congress of Mechanical Engineering, (Natal, RN, Brazil), UFRN/ABCM, 2011.
  • [5] Guan M. J. and Liao W. H., "On the efficiencies of piezoelectric energy harvesting circuits towards storage device voltages". Smart Materials and Structures, 16, 498-505, 2007.
  • [6] Hagood N. W., Chung W. H. and Flotow A. V., "Modeling of piezoelectric actuator dynamics for active structural control". Journal of Intelligent Materials Systems and Structures, 1, 327-354, 1990.
  • [7] Hu Y., Hu T. and Jiang Q., "On the interaction between the harvesting structure and the storage circuit of a piezoelectric energy harvester". International Journal of Applied Electromagnetics and Mechanics, 27, 297-309, 2008.
  • [8] IEEE, "IEEE standard on piezoelectricity". 1987.
  • [9] Kymissis J., Kendall C., Paradiso J. and Gershenfeld N., "Parasitic power harvesting in shoes". Second International Symposium on Wearable Computers, 132-139, 1998.
  • [10] Lallart M. and Guyomar D., "An optimized self-powered switching circuit for nonlinear energy harvesting with low voltage output". Smart Materials and Structures, 17, 035030, 2008.
  • [11] Ottman G. K., Hofmann H. F., Bhatt A. C. and Lesieutre G. A., "Adaptive piezoelectric energy harvesting circuit for wireless remote power supply". IEEE Transactions on Power Electronics, 17, 669-676, 2002.
  • [12] Renno J. M., Daqaq M. F. and Inman D. J., "On the optimal energy harvesting from a vibration source". Journal of Sound and Vibration, 320, 386-405, 2009.
  • [13] Roundy S., Wright P. K. and Rabaey J., "A study of low level vibrations as a power source for wireless sensor nodes". Computer Communications, 26, 1131-1144, 2003.
  • [14] Rupp C. J., Dunn M. L. and Maute K., "Analysis of piezoelectric energy harvesting systems with non-linear circuits using the harmonic balance method". Journal of Intelligent Material Systems and Structures, 21, 1383-1396, 2010.
  • [15] Shenck N. S. and Paradiso J. A., "Energy scavenging with shoe-mounted piezoelectrics". IEEE Micro, 21, 30-42, 2001.
  • [16] Sodano H. A., Inman D. J. and Park G., "Estimation of electric charge output for piezoelectric energy harvesting". Strain, 40, 49-58, 2004.
  • [17] Sodano H. A., Inman D. J. and Park G., "Comparison of piezoelectric energy harvesting devices for recharging batteries". Journal of Intelligent Material Systems and Structures, 16, 799-807, 2005.
  • [18] Starner T., "Human-powered wearable computing". IBM Systems Journal, 35, 618-629, 1996.
  • [19] Wickenheiser A. M. and Garcia E., "Power optimization of vibration energy harvesters utilizing passive and active circuits". Journal of Intelligent Material Systems and Structures, 21, 1343-1361, 2010.
  • [20] Yang Y. and Tang L., "Equivalent circuit modeling of piezoelectric energy harvesters". Journal of Intelligent Materials Systems and Structures, 20, 2223-2235, 2009.
Como citar:

Clementino, M. A.; Brennan, M. J.; Silva, S. da; "OPTIMIZATION OF THE ELECTRICAL AND MECHANICAL PARAMETERS OF A VIBRATION ENERGY HARVESTER", p. 189-199 . In: In Proceedings of the 10th World Congress on Computational Mechanics [= Blucher Mechanical Engineering Proceedings, v. 1, n. 1]. São Paulo: Blucher, 2014.
ISSN 2358-0828, DOI 10.5151/meceng-wccm2012-16681

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações