Full Article - Open Access.

Idioma principal


Chernyshev, S. L.; Kuryachii, A. P.; Rusyanov, D. A.; Skvortsov, V. V.;

Full Article:

The spatially periodic system of dielectric barrier discharge actuators intended for laminar flow control on a swept wing is simulated numerically. Novel scheme of the actuator system ensuring the discharge formation only near one edge of every exposed electrode is proposed. The mathematical model of dielectric barrier discharge in air is formulated in the drift-diffusion approximation without convective transfer with taking into consideration the following volumetric reactions: the ionization of nitrogen and oxygen by electron impact, the electron attachment to oxygen, the electron detachment from negative ions of oxygen, the ionion recombination, the electron-ion recombination. Two types of boundary conditions on dielectric surface are considered for comparison: the model of instantaneous recombination and the model of finite rates of recombination and electron desorption. Numerical simulation of both conventional and novel schemes of plasma actuators is carried out for one set of problem parameters. Enhanced energy efficiency of the proposed scheme is demonstrated.

Full Article:

Palavras-chave: dielectric barrier discharge, plasma actuator.,


DOI: 10.5151/meceng-wccm2012-19129

Referências bibliográficas
  • [1] Chernyshev S.L., Kiselev A.Ph., Kuryachii A.P., “Laminar flow control research at TsAGI: Past and present”. Progress in Aerospace Sci. 47 (3), 169-185, 201
  • [2] Roth J.R., Sherman D.M., Wilkinson S.P., “Electrohydrodynamic flow control with a glow-discharge surface plasma”. AIAA Journal. 38 (7), 1166-1172, 2000.
  • [3] Mack L.M., “On the stability of the boundary layer on a transonic swept wing”. AIAA Paper. N 264, 1-11, 1979.
  • [4] Kuryachii A.P., Manuilovich S.V., “Attenuation of cross flow-type instability in a 3D boundary layer due to volumetric force impact”. TsAGI Sci. Journal. 42 (3), 345-360, 2011.
  • [5] Kuryachii A.P., Rusyanov D.A., Skvortsov V.V., “Modeling of dielectric barrier discharge actuators at various gas pressures and estimation of their influence on shear flows”. TsAGI Sci. Journal. 42 (2), 227-243, 2011.
  • [6] Nichols T.G., Rovey J.L., “Fundamental processes of DBD plasma actuators operating at high altitude”. AIAA Paper. N 822, 1-23, 2012.
  • [7] Moreau E., “Airflow control by non-thermal plasma actuators”. J. Phys. D: Appl. Phys. 40 (3), 605-636, 200
  • [8] Corke T.C., Enloe C.L., Wilkinson S.P., “Dielectric barrier discharge plasma actuators for flow control”. Annu. Rev. Fluid Mech. 42, 505-529, 2010.
  • [9] Boeuf J.P., Lagmich Y., Callegari Th., Pitchford L.C., Unfer Th., “New insights in the physics of DBD plasma actuators for flow control”. AIAA Paper. N 1376, 1-17, 2008.
  • [10] Soloviev V.R., Krivtsov V.M., “Features of a surface barrier discharge modeling”. AIAA Paper. N 842, 1-16, 2009.
  • [11] Mamunuru M., Kortshagen U., Ernie D., Simon T. “Plasma actuator simulation: Force contours and dielectric charging characteristics”. AIAA Paper. N 1221, 1-9, 2010.
  • [12] Enloe C. L., Font G. I., McLaughlin T. E., Orlov D., “Surface potential and longitudinal electric field measurements in the aerodynamic plasma actuator”. AIAA Journal. 46 (11), 2730-2740, 2008.
  • [13] Font G. I., Enloe C. L., Newcomb J.Y., Teague A. L., Vasso A.R., McLaughlin T.E., “Effects of oxygen content on dielectric barrier discharge plasma actuator behavior”. AIAA Journal. 49 (7), 1366-1373, 2011.
  • [14] Roth J.R., Madhan R.C.M., Yadav M., Rahel J., Wilkinson S.P., “Flow field measurements of paraelectric, peristaltic, and combined plasma actuators based on the one atmosphere uniform glow discharge plasma (OAUGDPTM)”. AIAA Paper. N 845, 1-11, 2004.
  • [15] Thomas F.O., Corke T.C., Iqbal M., Kozlov A., Schatzman D. “Optimization of dielectric barrier discharge plasma actuators for active aerodynamic flow control”. AIAA Journal. 47 (9), 2169-2178, 2009.
  • [16] Kuryachii A.P., Rusyanov D.A., Skvortsov V.V., “Features of numerical modeling of a dielectric barrier discharge”. TsAGI Sci. Journal. 42 (1), 47-69, 2011.
  • [17] Golubovskii Yu.B., Maiorov V.A., Behnke J., Behnke J.F., “Influence of interaction between charged particles and dielectric surface over a homogeneous barrier discharge in nitrogen”. J. Phys. D: Appl. Phys. 35, 751-761, 2002.
  • [18] Zhao P., Roy S., “Study of spectrum analisys and signal biasing for dielectric barrier discharge actuator”. AIAA Paper. N 408, 1-9, 2012.
  • [19] Kossyi I.A., Kostinsky A.Yu., Matveyev A.A., Silakov V.P., “Kinetic scheme of the non-equilibrium discharge in nitrogen-oxygen mixtures”. Plasma Sources Sci. Technol. 1, 207-215, 1992.
  • [20] Porter C.O., Baughn J.W., McLaughlin T.E., Enloe C.L., Font G.I., “Temporal force measurements on an aerodynamic plasma actuator”. AIAA Paper. N 104, 1-15, 2006.
  • [21] Hoskinson A. R., Hershkowitz N. N., “Comparisons of force measurement methods for DBD plasma actuators in quiescent air”. AIAA Paper. N 485, 1-11, 2009.
Como citar:

Chernyshev, S. L.; Kuryachii, A. P.; Rusyanov, D. A.; Skvortsov, V. V.; "NUMERICAL MODELING OF PLASMA MULTI-ACTUATOR SYSTEM", p. 3026-3037 . In: In Proceedings of the 10th World Congress on Computational Mechanics [= Blucher Mechanical Engineering Proceedings, v. 1, n. 1]. São Paulo: Blucher, 2014.
ISSN 2358-0828, DOI 10.5151/meceng-wccm2012-19129

últimos 30 dias | último ano | desde a publicação