Full Article - Open Access.

Idioma principal

NONLOCAL DAMAGE MODEL USING THE MESHLESS FINITE POINTS METHOD

Yorda, F. Chacana; Pozo, L. P´erez;

Full Article:

We present the formulation and application for a nonlocal model with gradi- ent type regularization incorporated into the model by means of non-local displacements. The strong formulation of the FPM allows the use of high-order differentially shape functions with which we can approximate directly the fields of the nonlocal displacements, for that this technique is very attractive for a computational viewpoint. For the numerical implementation we used a fully explicit integration scheme and for the nonlinear problem the Newton Raphson iterative scheme. The validation of the obtained results is made starting from typical benchmark problems and available results on associated literature.

Full Article:

Palavras-chave: Non-locas damage models. Meshless. gradient models.,

Palavras-chave:

DOI: 10.5151/meceng-wccm2012-19800

Referências bibliográficas
  • [1] T. Fries, H. Matthies, Clasification and overview of meshfree methods, Informatikbericht- Nr. 2003, Technical University of Braunschweig 3.
  • [2] S. Li, W. Liu, Meshfree particle methods, Springer, Berlin, 2004.
  • [3] Y. Gu, Meshfree methods and their comparisons, International Journal of Computational Methods 4 (2005) 477–515.
  • [4] Y. Chen, J. Lee, A. Eskandarian, Meshless methods in solids mechanics, Springer, New York, 2006.
  • [5] E. Oñate, S. Idelsohn, O. Zienkiewics, R. Taylor, C. Sacco, A stabilized finite point method for analysis of fluid mechanics problems, Computer Methods in Applied Mechanics and Engineering 139 (1996) 315–346.
  • [6] E. Oñate, S. Idelsohn, O. Zienkiewicz, R. Taylor, A finite point methods in computational mechanics, aplication to convective transport and fluid flow, International Journal for Numerical Methods in Engineering 39 (1996) 3839–386
  • [7] E. Oñate, S. Idelsohn, A mesh free finite point method for advective-diffusive transport and fluid flow problems, Computational Mechanics 21 (1998) 283–292.
  • [8] E. Oñate, C. Sacco, S. Idelsohn, A finite point method for incompressible flow problems, Computer Visual Science 3 (2000) 67–75.
  • [9] E. Oñate, F. Perazzo, J.Miquel, A finite point method for elasticity problems, Computer and Structures 79 (2001) 2151–2163.
  • [10] F. Perazzo, S. Oller, J. Miquel, E. Oñate, Avances en el m´etodo de puntos finitos para la mecánica de sólidos, Revista Internacional de M´etodos Num´ericos en Ingenier´ia 22 (2006) 153–168.
  • [11] F. Perazzo, J. Miquel, E. Oñate, El m´etodo de puntos finitos para problemas de la dinámica de sólidos, Revista Internacional de M´etodos Num´ericos en Ingenier´ia 20 (2004) 235–246.
  • [12] L. Zhang, Y. Rong, H. Shen, T. Huang, Solidification modeling in continuous casting by finite point method, Journal of Materials Processing Technology 192–193 (2007) 511–517.
  • [13] L. P´erez-Pozo, F. Perazzo, Non-linear material behaviour analysis using meshless finite point method, in: 2nd ECCOMAS Thematic Conference on Meshless Methods, Porto, Portugal, 2007, pp. 251–268.
  • [14] L. P´erez-Pozo, F. Perazzo, A. Angulo, A meshless fpm model for solving nonlinear material problems with proportional loading based on deformation theory, Advances in Engineering Software 40 (2009) 1148–1154.
  • [15] F. Perazzo, R. Lohner, L. Perez-Pozo, Adaptive methodology for meshless finite point method, Advances in Engineering Software 22 (2007) 153–168.
  • [16] A. Angulo, L. P´erez-Pozo, F. Perazzo, A posteriori error estimator and an adaptive technique in meshless finite point method, Engineering Analysis with Boundary Elements 33 (2009) 1322–1338.
  • [17] M. Bitaraf, S. Mohammadi, Large deflection analysis of flexible plates by the meshless finite point method, Thin-Walled Structures 48 (2010) 200–214.
  • [18] J. Peraire, J. Peiro, L. Formaggia, K. Morgan, O. Zienkiewicz, Finite element euler computations in three dimensions, International Journal for Numerical Methods in Engineering 26 (1988) 2135–2159.
  • [19] E. Ortega, E. Oñate, S. Idelsohn, An improved finite point method for three-dimensional potential flows, Computational Mechanics 40 (2007) 949–963.
  • [20] F. Perazzo, Una metodolog´ia num´erica sin malla para la resolución de las ecuaciones de elasticidad mediante el m´etodo de puntos finitos, Universitat Polit´ecnica de Cataluña, Barcelona España, 2002, tesis Doctoral.
  • [21] Martin A. Análisis y formulación de un estimador del error en el m´etodo sin malla de punto finites. Universidad T´ecnica Federico Santa Mar´ia, Valpara´iso Chile, 2006 Trabajo de titulo.
  • [22] R. Taylor, S. Idelsohn, O. Zienkiewicz, E. Oñate, Moving least square approximations for solution of differential equations, CIMNE Research Report 74.
  • [23] Lemaitre J. and J. L. Chaboche. Mechanics of solid materials. Cambridge University Press.
  • [24] Hilleborg A., M. Modeer, and P.A. Petterson. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement and concrete research.6, 773-782.
  • [25] Oliver J. A. E. Huespe, M. D. Pulido, and E. Chaves . From continuum mechanics to fracture mechanics: the strong discontinuity approach. Engineering Fracture Mechanics 69(2), 113-136.
  • [26] Rodr´iguez-Ferran A., I. Morata , and A. Huerta. A new damage model based on nonlocal displacements. International Journal for numerical and analytical methods in geomechanics 29(5), 473-493.
  • [27] Bazant, Z. P. and B. H. Oh. Crack band theory for fracture in concrete. Materials and structures 16(3),155-177.
  • [28] P´erez-Pozo L, Campos A. Regularización de la localización por medio de gradients de deformación plastic no local z el m´etodo sin malla de puntos finites.
  • [29] P´erez-Pozo L, Chacana F. Avances en la reguarización de la energ´ia de gracira en un modelo de daño isotropic mediante un m´etodo sin malla. CILAMCE 2011.
  • [30] Chen J., Wu C., Belytschko T. Regularization of material instabilities by meshfree approximations with intrinsic lenght scales. Int. Journal for numerical methods in engineering.
Como citar:

Yorda, F. Chacana; Pozo, L. P´erez; "NONLOCAL DAMAGE MODEL USING THE MESHLESS FINITE POINTS METHOD", p. 4258-4272 . In: In Proceedings of the 10th World Congress on Computational Mechanics [= Blucher Mechanical Engineering Proceedings, v. 1, n. 1]. São Paulo: Blucher, 2014.
ISSN 2358-0828, DOI 10.5151/meceng-wccm2012-19800

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações