Artigo Completo - Open Access.

Idioma principal

New Ionic Conductor as Solid Electrolyte for Solid Oxide Fuel Cell Application

Ferreira, R.; Berton, M.A.C.;

Artigo Completo:

In this work, ceria-doped electrolytes with general formula of Ce0.8Y0.2-xLaxO1.9 (x=0.00; 0.05; 0.10; 0.15; 0.20) were synthesized by combustion method, using glycine as a fuel. The phase identification and morphology of the powders was studied by X-ray diffraction (XRD), surface area measurements (BET) and Raman spectroscopy. The consistency of particle sizes, calculated by the Scherrer formula, and BET measurements suggests that all as-synthesized powders were composed of weakly agglomerated crystallites. After the sintering process (1450 °C/5h) all pellets reach relative densities above 94% of the theoretical density. The contributions of grains and grain boundaries to the total conductivity, were investigated by a.c. impedance spectroscopy, in temperature range of 200-500 °C. The results show that the substitution of the yttrium by lanthanum mainly affects the grain boundary conductivity.

Artigo Completo:

Palavras-chave: doped-ceria, SOFC, solid electrolyte, fuel cells,

Palavras-chave:

DOI: 10.5151/chempro-s3ie-13

Referências bibliográficas
  • [1] http://www.cigre.org.br
  • [2] E. Fabbri, D. Pergolesi, E. Traversa, Materialsw challenges toward proton-conducting oxide fuel cells: a critical review, Chemical Society Reviews 39 (11) (2010) 4355–4369.
  • [3] R. Muccillo, E. N. S. Muccillo, F. C. Fonseca, Y. V. Franca, T. C. Porfirio, D. Z. de Florio, M. A. C. Berton, C. M. Garcia, Development and testing of anode-supported solid oxide fuel cells with slurry-coated electrolyte and cathode, Journal of Power Sources 156 (2) (2006) 455–460.
  • [4] S. Haile, Fuel cell materials and components, Acta Materialia 51 (19) (2003) 5981–6000.
  • [5] J. W. Fergus, Electrolytes for solid oxide fuel cells, Journal of Power Sources 162 (1) (2006) 30–40.
  • [6] I. Naik, T. Tien, Small-polaron mobility in nonstoichiometric cerium dioxide, Journal of Physics and Chemistry of Solids 39 (3) (1978) 311– 315.
  • [7] B. Dalslet, P. Blennow, P. Hendriksen, N. Bonanos, D. Lybye, M. Mogensen, Assessment of doped ceria as electrolyte, Journal of Solid State Electrochemistry 10 (8) (2006) 547–561.
  • [8] B. Steele, Appraisal of Ce1-yGdyO2-y/2 electrolytes for IT-SOFC operation at 500 degrees °C, Solid State Ionics 129 (1-4) (2000) 95–110.
  • [9] K. Eguchi, T. SetoguchiI, T. Inoue, H. Arai, Electrical-properties of ceriabased oxides and their application to solid oxide fuel-cells, Solid State Ionics 52 (1-3) (1992) 165–172.
  • [10] M. Dudek, A. Rapacz-Kmita, M. Mroczkowska, M. Mosialek, G. Mordarski, Co-doped ceria-based solid solution in the CeO2-M2O3-CaO, M = Sm, Gd system, Electrochimica Acta 55 (14, SI) (2010) 4387–4394.
  • [11] M. Dudek, W. Bogusz, L. Zych, B. Trybalska, Electrical and mechanical properties of CeO2-based electrolytes in the CeO2-Sm2O3-M2O3 (M=La,Y) system, Solid State Ionics 179 (1-6) (2008) 164–167.
  • [12] S. Omar, E. D. Wachsman, J. C. Nino, Higher conductivity Sm3+ and Nd3+ co-doped ceria-based electrolyte materials, Solid State Ionics 178 (37-38) (2008) 1890–1897.
  • [13] R. Shannon, Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallographica Section A 32 (SEP1) (1976) 751–767.
  • [14] K. Singh, S. A. Acharya, S. S. Bhoga, Glycine-nitrates combustion synthesis and properties of nano-sized Ce1-xGdxO2-delta solid solution for solid oxide fuel cell viewpoint, Indian Journal of Engineering and Materials Sciences 13 (6) (2006) 525–530.
  • [15] R. Purohit, B. Sharma, K. Pillai, A. Tyagi, Ultrafine ceria powders via glycine-nitrate combustion, Materials Research Bulletin 36 (15) (2001) 2711–2721.
  • [16] M. Mendelson, Average grain size in polycrystalline ceramics, Journal of the American Ceramic Society 52 (8) (1969) 443+.
  • [17] R. K. Lenka, T. Mahata, P. K. Sinha, A. K. Tyagi, Combustion synthesis of gadolinia-doped ceria using glycine and urea fuels, Journal of Alloys and Compounds 466 (1-2) (2008) 326–329.
  • [18] D. H. Prasad, J.-W. Son, B.-K. Kim, H.-W. Lee, J.-H. Lee, A significant enhancement in sintering activity of nanocrystalline Ce0.9Gd0.1O1.95 powder synthesized by a glycine-nitrate-process, Journal of Ceramic Processing Research 11 (2) (2010) 176–183.
  • [19] L. Li, F. Chen, J.-Q. Lu, M.-F. Luo, Study of Defect Sites in Ce1-xMxO2- (x=0.2) Solid Solutions Using Raman Spectroscopy, Journal of Physical Chemistry A 115 (27) (2011) 7972–7977.
  • [20] M. Luo, Z. Yan, L. Jin, M. He, Raman spectroscopic study on the structure in the surface and the bulk shell of CexPr1-xO2-(delta) mixed oxides, Journal of Physical Chemistry B 110 (26) (2006) 13068–13071.
  • [21] J. McBride, K. Hass, B. Poindexter, W. Weber, Raman and x-ray studies of Ce1-xRexO2-y, where Re=La, Pr, Nd, Eu, Gd, and Tb, Journal of Appplied Physics 76 (4) (1994) 2435–2441.
  • [22] W. Y. Hernandez, O. H. Laguna, M. A. Centeno, J. A. Odriozola, Structural and catalytic properties of lanthanide (La, Eu, Gd) doped ceria, Journal of Solid State Chemistry 184 (11) (2011) 3014–3020.
Como citar:

Ferreira, R.; Berton, M.A.C.; "New Ionic Conductor as Solid Electrolyte for Solid Oxide Fuel Cell Application", p. 117-129 . In: In Proceedings of the 1st International Seminar on Industrial Innovation in Electrochemistry [=Blucher Chemistry Proceedings]. São Paulo: Blucher, 2014. São Paulo: Blucher, 2014.
ISSN 2318-4043, ISBN: 978-85-8039-088-9
DOI 10.5151/chempro-s3ie-13

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações