Full Article - Open Access.

Idioma principal


Mercuri, E. G. F.; Daniel, A. L.; Machado, R. D.; Hecke, M. B.;

Full Article:

Nowadays scaffolds and hydroxyapatite biomaterials have been widely used in the biomedical field. The biomechanical engineering is continuously improving methods and materials to analyze and optimize such porous media. The purpose of this article is to implement some methodology discussed in the literature to compare the results of micromechanical with normal mechanical finite elements simulations. The strength and stiffness of the material have been predicted beyond statistical correlations with porosity or empirical structureproperty relationships, as to resolve the material-immanent microstructures governing the overall mechanical behavior. A homogenization procedure in the context of the continuum micromechanics provides the macroscopic mechanical properties based in the microstructure and composition of the material. In this work the representative volume element of the porous polycrystals consists of hydroxyapatite needles and spherical pores. Other authors tested the micromechanical model with experimental sets on the basis of biomaterial-independent elastic and strength properties of hydroxyapatite. A two-dimension example programmed in MATLAB is depicted in this work simulating a bone scaffold with bone cells. We recognize the potential of micromechanical modeling in improving biomaterial design, through optimization of key parameters such as porosities or geometries of microstructures, in order to reach desired values for biomaterial stiffness or strength.

Full Article:

Palavras-chave: Bone remodeling, Hydroxyapatite Biomaterials, Micromechanics, Eshelby Tensor,


DOI: 10.5151/meceng-wccm2012-19393

Referências bibliográficas
  • [1] Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metallurgica, 21(5):571 – 574, 1973.
  • [2] J. E. Aubin and E. Bonnelye. Osteoprotegerin and its ligand: a new paradigm for regulation of osteoclastogenesis and bone resorption. Medscape Womens Health, 5 (2), 2000.
  • [3] Y. Benveniste. A new approach to the application of mori-tanaka’s theory in composite materials. Mechanics of Materials, 6(2):147 – 157, 1987.
  • [4] P. Du and Y. Ye. Endogenous parathyroid hormone-related peptide enhances proliferation and inhibits differentiation in the osteoblast-like cell line ros 17/2. Bone, 26 (5):429–436, 2000.
  • [5] J. D. Eshelby. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 241(1226):376–396, 1957.
  • [6] A. Fritsch. Multiscale Explanation of Elasticity and Strength of Bone and Bone Replacement Materials Made of Hydroxyapatite, Glass-Ceramics, or Titanium: A Continuum Micromechanics Approach. PhD thesis, TU Wien, Vienna, Austria, 2009.
  • [7] A. Fujimori and S. L. Cheng. Interactions of pth and pthrp with the pth/pthrp receptor and with downstream signaling pathways: exceptions that provide the rules[editorial; comment]. J. Bone Mineral Res., 14 (2):173–177, 1991.
  • [8] D. L. Halladay and R. R. Miles. Identification of signal transduction pathways and promoter sequences that mediate parathyroid hormone 1-38 inhibition of osteoprotegerin gene expression. J. Cell Biochem., 84 (1):1–11, 2001.
  • [9] S. Harada and G. Rodan. Control of osteoblast function and regulation of bone mass. Nature, 75:349–355, 2002.
  • [10] M. B. Hecke, L. M. R. Carvalho, and J. A. O. Sim˜oes. A bone remodeling constitutive model using mathematical programming. internacional conference on engineering optimization. In Internacional Conference on Engineering Optimization. Anais do congresso, Rio de Janeiro, 2008.
  • [11] M. B. Hecke, F. V. Tormena, L. A. Farani, L. M. R. Carvalho, R.D. MACHADO, and J. A. Sim˜oes. A damage-remodeling bone models derived from thermodynamics pseudopotentials. Aveiro, 2007. Relatório Interno de Pesquisa, Universidade de Aveiro.
  • [12] Christian Hellmich, Franz-Josef Ulm, and Luc Dormieux. Can the diverse elastic properties of trabecular and cortical bone be attributed to only a few tissue-independent phase properties and their interactions? Biomechanics and Modeling in Mechanobiology, 2:219–238, 2004. 10.1007/s10237-004-0040-0.
  • [13] R Hill. The elastic behaviour of a crystalline aggregate. Proceedings of the Physical Society. Section A, 65(5):349, 1952.
  • [14] R. Hill. Elastic properties of reinforced solids: Some theoretical principles. Journal of the Mechanics and Physics of Solids, 11(5):357 – 372, 1963.
  • [15] Y. Isogai and T. Akatsu. Parathyroid hormone regulates osteoblast differentiation positively or negatively depending on the differentiation stages. J. Bone Mineral Res., 11 (10):1384–1393, 1996.
  • [16] D. A. Lauffenburger and J. J. Linderman. Receptors: Models for Binding, Trafficking, and Signaling. Oxford University Press, New York; Toronto, 1996.
  • [17] Vincent Lemaire, Frank L. Tobina, Larry D. Grellera, Carolyn R. Choa, and Larry J. Suvab. Modeling the interactions between osteoblast and osteoclast activities in bone remodeling. jtbi, 229:293–309, 2004.
  • [18] Y. Ma and R. L. Cain. Catabolic effects of continuous human pth 1 to 38 in vivo is associated with sustained stimulation of rankl and inhibition of osteoprotegerin and geneassociated bone formation. Endocrinology, 142 (9):4047–4054, 2001.
  • [19] S. C. Manolagas. Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr. Rev., 21 (2):115–137, 2000.
  • [20] K. Matsuo and N. Irie. Osteoclast-osteoblast communication. Arch Biochem Bioph, 201–209:476, 2008.
  • [21] E. G. F. Mercuri. Modelo computacional para descrever o remodelamento ósseo no movimento ortodˆontico usando potenciais termodinˆamicos generalizados e otimizac¸ ão. 2009. Master thesis.
  • [22] P. Pivonka, J. Zimak, D. W. Smith, B. S. Gardiner, C. R. Dunstan, N. A. Sims, T. J. Martin, and G.R. Mundy. Model structure and control of bone remodeling: A theoretical study. Bone, 43:249–263, 2008.
  • [23] A. Reuss. Berechnung der Fliessgrenze von Mischkristallen auf Grund der Plastizitatsbedingung fur Einkristalle. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift fur Angewandte Mathematik und Mechanik (Z. angew. Math. Mech.), 9:49– 58, 1929.
  • [24] A.G Robling, A.B Castillo, and C.H Turner. Biomechanical and molecular regulation of bone remodeling. Annu. Rev. Biomed. Eng., 8:455–498, 2006.
  • [25] J. A. Sanz-Herrera, J. M. Garc´ia-Azar, and M. Doblar´e. On scaffold designing for bone regeneration: A computational multiscale approach. Acta Biomaterialia, 5:219–229, 2009.
  • [26] S. Scheiner, P. Pivonka, C. Hellmich, and D. W. Smith. Mechanobiological regulation of bone remodeling – Theoretical development of a coupled systems biologymicromechanical approach. ArXiv e-prints, January 2012.
  • [27] P. M. Siegel and J. Massague. Cytostatic and apoptotic actions of tgf-beta in homeostasis and cancer. Nat. Rev. Cancer, 3 (11):807–821, 2003.
  • [28] G. Silvestrini, P. Ballanti, F. Patacchioli, M. Leopizzi, N. Gualtieri, P. Monnazi, E. Tremante, D. Sardella, and E. Bonucci. Detection of osteoprotegerin (opg) and its ligand (rankl) mrna protein in femur and tibia of the rat. J Mol Hist, 35:59–67, 2005.
  • [29] J. L. Simon, S. Michna, Rekow E. D. Lewis, J. A., V. P. Thompson, Yampolsky A. Smay, J. E., J. R. Parsons, and J. L. Ricci. In vivo bone response to 3d periodic hydroxyapatite scaffolds assembled by direct ink writing. J. Biomed. Mater. Res., 83A:747–758, 2007.
  • [30] P. Suquet, editor. Continuum micromechanics. Springer-Verlag New York, Inc., New York, NY, USA, 1997.
  • [31] S. L. Teitelbaum. Bone resorption by osteoclasts. Science, 289 (5484):1504–1508, 2000.
  • [32] F. V. Tormena. Um Modelo de remodelamento ósseo utilizando potenciais termodin ˆamicos generalizados. PhD thesis, Universidade Federal do Paraná, Curitiba, Paraná, Brazil, 2009.
  • [33] W. Voigt. Ueber die Beziehung zwischen den beiden Elasticitatsconstanten isotroper Kerper. Annalen der Physik (Ann. Phys.), 274:573–587, 1889.
  • [34] Andre Zaoui. Continuum micromechanics: Survey. Journal of Engineering Mechanics, 128(8):808–816, 2002.
  • [35] T. I. Zohdi and P. Wriggers. An Introduction to Computational Micromechanics. 2008.
Como citar:

Mercuri, E. G. F.; Daniel, A. L.; Machado, R. D.; Hecke, M. B.; "MODELO NUME´RICO MICROMECAˆ NICO PARA SCAFFOLD DE HIDROXIAPATITA COM CULTURA CELULAR", p. 3497-3519 . In: In Proceedings of the 10th World Congress on Computational Mechanics [= Blucher Mechanical Engineering Proceedings, v. 1, n. 1]. São Paulo: Blucher, 2014.
ISSN 2358-0828, DOI 10.5151/meceng-wccm2012-19393

últimos 30 dias | último ano | desde a publicação