Full Article - Open Access.

Idioma principal


Vimmr, J.; Jonásová, A.; Bublík, O.;

Full Article:

The patency and overall performance of implanted bypass grafts is closely related to hemodynamics and its influence on vessel remodelling. In this regard, numerical investigation of blood flow in models reconstructed from clinical data may, next to clinical research, provide a valuable insight into the problem of graft failures, which are usually associated with restenosis and/or occlusive intimal hyperplasia. In this study, numerical results of pulsatile non-Newtonian blood flow in three realistic aorto-coronary bypass models are presented and further discussed with emphasis placed on the distribution of wall shear stress (WSS) and oscillatory shear index (OSI). Blood’s shear-thinning behaviour is described by the Carreau- Yasuda model. Assuming all model walls to be impermeable and inelastic, the numerical solution of the mathematical model, which has the form of time-dependent non-linear system of Navier-Stokes (NS) equations, is carried out on the basis of the three-stage fractional step method and cell- centred finite volume method formulated for hybrid unstructured tetrahedral grids. The viscous terms of the NS equations are time discretised implicitly using the Crank- Nicolson scheme. The convective terms are solved explicitly and their computation utilises a local time-stepping technique in order to improve the overall computational efficiency of the developed CFD code.

Full Article:

Palavras-chave: Aorto-coronary bypass graft, pulsatile blood flow, Carreau-Yasuda model, Finite volume method, Fractional-step method.,


DOI: 10.5151/meceng-wccm2012-18501

Referências bibliográficas
  • [1] Bassiouny H. S., White S., Glagov S., Choi E., Giddens D. P., Zarins C. K., ”Anastomotic intimal hyperplasia: Mechanical injury or flow induced”. J. Vasc. Surg. 15, 708-717, 1992.
  • [2] Barth T. J., Jesperson D. C., ”The design and application of upwind schemes on unstructured meshes”. AIAA Paper 89-0366, 1989.
  • [3] Cho Y. I., Kensey K. R., ”Effects of the non-Newtonian viscosity of blood on flows in diseased arterial vessels. Part I: Steady flows”. Biorheology 28, 241-262, 1991.
  • [4] Ferziger J. H., Peri´c M. Computational methods for fluid dynamics, Springer, 1999.
  • [5] Frauenfelder T., Boutsianis E., Schertler T., Husmann L., Leschka S., Poulikakos D., Marincek B., Alkadhi H., ”Flow and wall shear stress in end-to-side and side-to-side anastomosis of venous coronary artery bypass grafts”. Biomed. Eng. Online 6, 35, 2007.
  • [6] Haruguchi H., Teraoka S., ”Intimal hyperplasia and hemodynamic factors in arterial bypass and arteriovenous grafts: A review”. J. Artif. Organs 6, 227-235, 2003.
  • [7] He X., Ku D. N., ”Pulsatile flow in the human left coronary artery bifurcation: Average conditions”. J. Biomech. Eng. 118, 74-82, 2012.
  • [8] Kabinejadian F., Chua L. P., Ghista D. N., Sankaranarayanan M., Tan, Y. S., ”A novel coronary artery bypass graft design of sequential anastomoses”. Ann. Biomed. Eng. 38, 3135-3150, 2010.
  • [9] Kim D., Choi H., ”A second-order time accurate finite volume method for unsteady incompressible flow on hybrid unstructured grids”. J. Comput. Phys. 162, 411-428, 2000.
  • [10] Leuprecht A., Kozerke S., Boesiger P., Perktold K., ”Blood flow in human ascending aorta: A combined MRI and CFD study”. J. Eng. Math. 47, 387-404, 2003.
  • [11] Loth F., Fischer P. F., Bassiouny H. S., ”Blood flow in end-to-side anastomoses”. Annu. Rev. Fluid Mech. 40, 367-393, 2008.
  • [12] Olufsen M. S., Peskin C. S., Kim W. Y., Pedersen E. M., Nadim A., Larsen J., ”Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions”. Ann. Biomed. Eng. 28, 1281-1299, 2000.
  • [13] Vimmr J., Joná?sová A., ”Non-Newtonian effects of blood flow in complete coronary and femoral bypasses”. Math. Comput. Simulat. 80, 1324-1336, 2010.
  • [14] Vural K. M., S¸ ener E., Tas¸demir O., ”Long-term patency of sequential and individual saphenous vein coronary bypass grafts”. Eur. J. Cardio-Thorac. 19, 140-144, 2001.
  • [15] Xiong F. L., Chong C. K., ”A parametric numerical investigation on haemodynamics in distal coronary anastomoses”. Med. Eng. Phys. 30, 311-320, 2008.
  • [16] Zeng D., Ding Z., Friedman M. H., Ethier C. R., ”Effects of cardiac motion on right coronary artery hemodynamics”. Ann. Biomed. Eng. 31, 420-429, 2003.
  • [17] Zhang J. M., Chua L. P., Ghista D. N., Yu S. C. M., Tan Y. S., ”Numerical investigation and identification of susceptible sites of atherosclerotic lesion formation in a complete coronary artery bypass model”. Med. Biol. Eng. Comput. 46, 689-699, 2008.
Como citar:

Vimmr, J.; Jonásová, A.; Bublík, O.; "MODELLING OF BLOOD’S NON-NEWTONIAN BEHAVIOUR IN PATIENT-SPECIFIC AORTO-CORONARY BYPASS GRAFTS", p. 1634-1653 . In: In Proceedings of the 10th World Congress on Computational Mechanics [= Blucher Mechanical Engineering Proceedings, v. 1, n. 1]. São Paulo: Blucher, 2014.
ISSN 2358-0828, DOI 10.5151/meceng-wccm2012-18501

últimos 30 dias | último ano | desde a publicação