fevereiro 2015 vol. 1 num. 2 - XX Congresso Brasileiro de Engenharia Química

Artigo - Open Access.

Idioma principal

MODELING AND SIMULATION OF THE RUN LENGTH OF AN ETHANE FURNACE FOR INDUSTRIAL APPLICATION

SOLEDAR, L.; CHRISTMANN, A.; MUNIZ, A. R.; SOARES, R. de P.;

Artigo:

In petrochemical industries, steam cracking furnaces are used to process light hydrocarbons like naphta, ethane, propane and LPG in order to obtain olefins, like ethylene and propylene. Ethane steam cracking furnaces are of fundamental importance to improve the overall yields of an olefins production plant. In this context, a model for an industrial steam cracking furnace application was developed using the equation-oriented dynamic simulator EMSO. In the proposed model, a multi-section plug flow reactor was coupled with cracking kinetics from literature. The simulations results are in good agreement with published and industrial design data. The model also provides detailed information which can be used for optimal run length.

Artigo:

Palavras-chave:

DOI: 10.5151/chemeng-cobeq2014-1020-21548-162479

Referências bibliográficas
  • [1] CAI, H.; KRZYWICKI, A.; OBALLA, M. C. Coke formation in steam crackers for ethylene production.Chemical Engineering and Processing, v. 41, p. 199-214, 2002.
  • [2] DETEMMERMAN, T.; FROMENT, F. Three dimensional coupled simulation of furnaces and reactor tubes for the thermal cracking of hydrocarbons. Revue de l´Institut Français du Pétrole, v. 53, mars-Área temática: Simulação, Otimização e Controle de Processos 7avril 1998.
  • [3] FROMENT, G.F.; BISCHOFF, K.B.; DE WILDE, J.Chemical Reactor Analisys and Design, USA: John Wiley and Sons Inc., 3rd edition,2011.
  • [4] HEYNDERICKX, G. J.; FROMENT, G. F. Simulation and comparison of the run length of an ethane cracking furnace with reactor tubes of circular and elliptical cross sections. Ind. Eng. Chem. Res., v. 37, p. 914-922, 1998.
  • [5] PLEHIERS, P. M.; REYNIERS, G. C.; FROMENT, G. F. Simulation of the run lenght of an ethane cracking furnace.Ind. Eng. Chem. Res., v. 29, p. 636-641, 1990.
  • [6] REYNIERS, G. C.; FROMENT, G. F.; KOPINKE, F. D.; ZIMMERMANN, G. Coke formation in the thermal cracking of hydrocarbons 4. Modeling of Coke Formation in Naphta Cracking. Industrial Engineer Chemistry Research, v. 33, p. 2584-2590, 1994.
  • [7] SABBE, M. K.; VAN GEEM, K. M.; REYNIERS, M. F.; MARIN, G. B. First Principle-Based simulation of ethane steam cracking. Aiche Journal, v. 57, n. 2, p. 482-496, 2011.
  • [8] SOARES, R. P.; SECCHI, A. R. EMSO: A new environment for modelling, simulation and optimization. Computer Aided Chemical Engineering, v. 14, p. 947-952, 2003.
  • [9] STEFANIDIS, G. D.; MERCI, B., HEYNDERICKX, G. J.; MARIN, G. B. CFD simulations of steam cracking furnaces using detailed combustion mechanisms. Computers and Chemical Engineering, v. 30, p. 635-649, 2006.
  • [10] SUNDARAM, K. M.; FROMENT, G. F. Modeling of thermal cracking kinetics – I: thermal cracking of ethane, propane and their mixtures. Chemical Engineering Science, v. 32, p. 601-608, 1977. TOWFIGHI, J.; SANDRAMELI, M.; NIAEI, A. Coke formation Mechanisms and Coke Inhibiting Methods in Pyrolysis Furnaces. Journal of Chemical Engineering of Japan, v. 35, n. 10, P. 923-937, 2002.
  • [11] VAN GEEM, K. M.; HEYNDERICKX, G. J.; MARIN, G. B. Effect of radial temperature profiles on yields in steam cracking.Aiche Journal, v. 50, P. 173-183, 2004.
  • [12] VRTech, VRTherm Thermodynamic Package, available at www.vrtech.com.br
Como citar:

SOLEDAR, L.; CHRISTMANN, A.; MUNIZ, A. R.; SOARES, R. de P.; "MODELING AND SIMULATION OF THE RUN LENGTH OF AN ETHANE FURNACE FOR INDUSTRIAL APPLICATION", p. 11957-11964 . In: Anais do XX Congresso Brasileiro de Engenharia Química - COBEQ 2014 [= Blucher Chemical Engineering Proceedings, v.1, n.2]. São Paulo: Blucher, 2015.
ISSN 2359-1757, DOI 10.5151/chemeng-cobeq2014-1020-21548-162479

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações