fevereiro 2015 vol. 1 num. 2 - XX Congresso Brasileiro de Engenharia Química

Artigo - Open Access.

Idioma principal


ELY, B.; BORTOLI, A. L. de;


This work aims to model and simulate the fluid flow in a porous medium with precipitation and dissolution of minerals. The importance of this theme is its contribution to understanding the flow process in the soil, including minerals deposition and aquifers formation. Due to temperature changes, the natural convection of the fluid in the porous medium may induce to precipitation or dissolution of chemical species by changing the pH. There appear many physical phenomena, which can be analyzed by sophisticated transport models. In this work, the model is based on a set of nonlinear differential equations of Navier-Stokes type that considers variations in temperature, pressure, fluid composition and mineral composition. The solution procedure is based on the finite differences Runge-Kutta multistage scheme. The results compare favourably with data found in the literature.



DOI: 10.5151/chemeng-cobeq2014-1926-16838-181199

Referências bibliográficas
  • [1] BEJAN, A.; NIELD, D.A. Convection in Porous Media. New York, Springer, 3ª ed., 2006.
  • [2] BJØRLYKKE, K. Fluid flow in sedimentary basins. Sedimentary Geology, 86, p.137-158, 1993.
  • [3] Área temática: Simulação, Otimização e Controle de Processos 7FRANCISQUETTI, E. P. Desenvolvimento de um modelo convectivo-difusivo-reativo para a migração de fluidos e combustão em meios porosos. Exame de Qualificação, PPGMAP, UFRGS, Porto Alegre, RS, Brasil, 201
  • [4] GENTHON, P.; SCHOTT, J.; DANDURAND, J. L. Carbonate diagenesis during thermo-convection: Application to secondary porosity generation in clastic reservoirs. Chem. Geology, 142, p. 41-61, 1997.
  • [5] KEHEW, A. E. Applied chemical hydrogeology. Prentice Hall, 2001.
  • [6] KÜHN, M. Reactive Flow Modeling of Hydrothermal Systems. Lecture Notes in Earth Sciences. Springer, 2004.
  • [7] MORSE, J. W.; ARVIDSON, R. S. The dissolution kinetics of major sedimentary carbonate minerals. Earth-Science Reviews, 58, p. 51-84, 2002.
  • [8] RABINOWICZ M.; DANDURAND, J. L.; JAKUBOWSKI, M.; SCHOTT, J.; CASSAN, J. P. Convection in a north sea oil reservoir: Inferences on diagenesis and hydrocarbon migration. Earth and Planetary Science Letters, 74, p. 387-404, 1985.
  • [9] RASHAD, A.M.; EL-KABEIR, S.M.M. Heat and mass transfer in transient flow by mixed convection boundary layer over a stretching sheet embedded in a porous medium with chemically reactive species. J. of Porous Media, 13, p. 75-85, 2010.
  • [10] SOLER, J.M. Reactive transport modeling of the interaction between a high-pH plume and a fractured marl: the case of Wellenberg. Applied Geochemistry,18, p. 1555-1571, 2003.
  • [11] WOOD, J. R.; HEWETT, T.A. Reservoir diagenesis and convective fluid flow. Clastic diagenesis: AAPG Memoir, 37, p. 99-110, 1984.
  • [12] XU, T.; PRUESS, K. Modeling multiphase non-isothermal fluid flow and reactive geochemical transport in variably saturated fractured rocks: 1. Methodology. American J. of Science, 301, p. 16-33, 2001.
Como citar:

ELY, B.; BORTOLI, A. L. de; "MODELING AND SIMULATION OF THE PROCESS OF PRECIPITATION AND DISSOLUTION OF THE MINERALS CALCITE AND DOLOMITE", p. 12967-12974 . In: Anais do XX Congresso Brasileiro de Engenharia Química - COBEQ 2014 [= Blucher Chemical Engineering Proceedings, v.1, n.2]. São Paulo: Blucher, 2015.
ISSN 2359-1757, DOI 10.5151/chemeng-cobeq2014-1926-16838-181199

últimos 30 dias | último ano | desde a publicação