Full Article - Open Access.

Idioma principal

MATERIAL MODEL PROPOSAL FOR THE DESIGN OF BIODEGRADABLE PLASTIC STRUCTURES

Vieira, A. C.; Guedes, R. M.; Marques, A. T.; Tita, V.;

Full Article:

Several biodegradable polymers are used in many products with short life cycle. Aliphatic polyesters, such as polylactic acid (PLA), polyglycolic acid (PGA),polycaprolactone (PCL), polydioxone (PDO) and others, have been commonly used in biodegradable products. Important applications of these are found in the biomedical field, where biodegradable materials are applied on manufacturing scaffolds. These scaffolds temporarily replace the biomechanical functions of a biologic tissue, while it progressively regenerates its capacities. In the case of commodity products, biodegradable plastics claim clear environmental advantages in several brief use applications, mainly in their final stage of life (waste disposal), which can clearly be evident through life cycle assessment. Performance of a device depends of its behavior to mechanical, thermal or chemical applied stresses. It is mostly conditioned by the materials selection and dimensioning of the product. For a biodegradable product, performance will decrease along its degradation. From the final user point of view, performance should be enough for the predicted use, during all its life cycle. Biodegradable plastics can present short term performances similar to conventional plastics. Hydrolytic and/or enzymatic chain cleavage of these materials leads to α-hydroxyacids, which, in most cases, are ultimately assimilated in human body or in a composting environment. The mechanical behavior of biodegradable materials along its degradation time, which is an important aspect of the project, is still an unexplored subject. The failure criteria for maximum strength as a function of degradation time have traditionally been modeled according to a first order kinetics. In this work, hyper elastic constitutive models, such as the Neo-Hokean, the Mooney-Rivlin modified and the second reduced order will also be discussed. An example of these is shown for a blend composed of polylatic acid (PLA) and polycaprolactone (PCL). A numerical approach using ABAQUS is presented, where the material properties of the model proposal are automatically updated in correspondence to the degradation time, by means of a User Material subroutine (UMAT). The parameterization of the material model proposal for different degradation time was achieved by fitting the theoretical curves with the experimental data of tensile tests made on PLA-PCL blend (90:10) specimens. The material model proposal presented here could be used as a design toll for generic biodegradable devices.

Full Article:

Palavras-chave: biodegradable materials, constitutive models, long-term dimensioning,

Palavras-chave:

DOI: 10.5151/meceng-wccm2012-18893

Referências bibliográficas
  • [1] Agarwal M., Koelling K. W., Chalmers J. J., “Characterization of the Degradation of Polylactic Acid Polymer in a Solid Substrate Environment”. Biotechnol. Prog. 14, 517-526, 1998.
  • [2] Ashammakhi N., Mäkelä E. A., Vihtonen K., Rokkanen P., Kuisma H., Tormala P., “Strength retention of self-reinforced polyglycolide membrane: an experimental study”. Biomaterials. 16, 135-138, 1995.
  • [3] Aslan S., Calandrelli L., Laurienzo P., Malinconico M., Migliares C., “Poly(d,l-lactic acid)/poly(caprolactone) blend membranes: preparation and morphological characterization”. J. Mater. Sci. 35, 1615–1622, 2000.
  • [4] Auras R., Harte B., Selke S., “An Overview of Polylactides as Packaging Materials”. Macromol. Biosci. 4, 835–864, 200
  • [5] Bellenger V., Ganem M., Mortaigne B., Verdu J., “Lifetime prediction in the hydrolytic ageing of polyesters”. Polym. Degrad. Stab. 49, 91–97, 199
  • [6] Bikiaris D. N., Papageorgiou G. Z., Achilias D. S., “Synthesis and comparative biodegradability studies of three poly(alkylene succinate)s”. Polym. Degrad. Stab. 91, 31- 43, 200
  • [7] Chen C-C., Chueh J.-Y., Tseng H., Huang H.-M., Lee S.-Y., “Preparation and characterization of biodegradable PLA polymeric blends”. Biomaterials. 24, 1167–1173, 2003.
  • [8] Chen G.-Q., Wu Q., “Review:The application of polyhydroxyalkanoates as tissue engineering materials”. Biomaterials. 26, 6565–6578, 2005.
  • [9] Cohn D., Hotovely-Salomon A., “Biodegradable multiblock PEO/PLA thermoplastic elastomers: molecular design and properties”. Polymer. 46, 2068–2075, 2005.
  • [10] Colombo A., Karvouni E., “Biodegradable stents: fulfilling the mission and stepping away”. Circulation. 102, 371-373, 2000.
  • [11] Fan L., Nan C.-W., Li M., “Thermal, electrical and mechanical properties of (PEO)16LiClO4 electrolytes with modified montmorillonites”. Chem. Phys. Lett. 369, 698–702, 2003.
  • [12] Farrar D. F., Gillson R. K., “Hydrolytic degradation of polyglyconate B: the relationship between degradation time, strength and molecular weight”. Biomaterials. 23, 3905–3912, 2002.
  • [13] Ferretti A, Carreau P. J., Gerard P., “Rheological and Mechanical Properties of PEO/Block Copolymer Blends”. Polym. Eng. Sci. 45, 1385–1394, 2005.
  • [14] Göpferich A., “Mechanism of polymer degradation and erosion”. Biomaterials. 23, 103–114, 1996.
  • [15] Grizzi I., Garreau H., Li S., Vert M., “Hydrolytic degradation of devices based on pol[ DL-lactic acid) size-dependence”. Biomaterials. 16, 305-311, 1995.
  • [16] Herzog K., Muller R.-J., Deckwer W.-D., “Mechanism and kinetics of the enzymatic hydrolysis of polyester nanoparticles by lipases”. Polym. Degrad. Stab. 91, 2486–2498, 2006.
  • [17] Hong J.-T., Cho N.-S., Yoon H.-S., Kim T.-H., Koh M.-S., Kim W.-G., “Biodegradable Studies of Poly(trimethylenecarbonate-e-caprolactone)-block-poly(p-dioxanone), Poly( dioxanone), and Poly(glycolide-e-caprolactone) (Monocryl) Monofilaments”. J. Appl. Polym. Sci. 102, 737–743, 2006.
  • [18] Langer L., “Drug delivery and targeting.”, Nature. 392, 5-10, 1998.
  • [19] Laufman H., Rubel T., “Synthetic absordable sutures”. Surg. Gynecol. Obstet. 145, 597–608, 1977.
  • [20] Levenberg S., Langer R., “Advances in tissue engineering”. Ed. Schatten, G.P., “Current topics in developemental biology“. Elsevier Academic, San Diego, 113, 2004.
  • [21] Mohantya A. K., Misra M., Hinrichsen G., “Biofibres, biodegradable polymers and biocomposites: An overview”. Macromol. Mater. Eng. 276-277, 1–24, 2000.
  • [22] Nagarajan S., Sudhakar S., Srinivasan K. S. V. “Poly(ethylene glycol) block copolymers by redox process: kinetics, synthesis and characterization”. Pure. Andamp; Appl. Chem. 70, 1245-1248, 1998.
  • [23] Nair L. S., Laurencin C. T., “Biodegradable polymers as biomaterials”, Prog. Polym. Sci. 32, 762–798, 2007.
  • [24] Navarro M., Ginebra M. P., Planell J. A., Barrias C. C., Barbosa M. A., “In vitro degradation behavior of a novel bioresorbable composite material based on PLA and a soluble CaP glass”. Acta Biomaterialia. 1, 411–419, 2005.
  • [25] Nikolic M. S., Poleti D., Djonlagic J., “Synthesis and characterization of biodegradable poly(butylenes succinate-co-butylene fumarate)s”. Eur. Polym. J. 39, 2183-2192, 2003.
  • [26] Oksmana K., Skrifvars M., Selinc J.-F., “Natural fibres as reinforcement in polylactic acid (PLA) composites”. Comp. Sci. Tech. 63, 1317–1324, 2003.
  • [27] Pietrzak W. S., Sarver D. R, Verstynen M. L., “Bioabsorbable polymer science for the practicing surgeon.”, J. Craniofac. Surg. 8, 87-91, 1997.
  • [28] Siparsky G.L., Voorhees K.J., Miao F., “Hydrolysis of polylactic acid (PLA) and polycaprolactone (PCL) in aqueous acetonitrile solutions: autocatalysis.” J. Polym. Environ. 6, 31–41, 1998.
  • [29] Soares J. S., Rajagopal K. R., Moore J. E., “Deformation-induced hydrolysis of a degradable polymeric cylindrical annulus”. Biomech. Model. Mechaobiol. 9, 177-186, 2010.
  • [30] Södergard A., Stolt M., “Properties of lactic acid based polymers and their correlation with composition”. Prog. Polym. Sci. 27, 1123-1163, 2002.
  • [31] Tamela T. L., Talja M., “Biodegradable urethral stents”. B.J.U. Int. 92, 843-850, 2003.
  • [32] Todo M., Park S.-D., Takayama T., Arakawa K., “Fracture micromechanisms of bioabsorbable PLLA/PCL polymer blends”. Eng. Fract. Mech. 74, 1872–1883, 2007.
  • [33] Tsuji H., Ikada Y., “Blends of Aliphatic Polyesters. I. Physical Properties and Morphologies of Solution-Cast Blends f rorn Poly(Di-lactide) and Poly(e-caprolactone)”. J. Appl. Polym. Sci. 60, 2367-2375, 1996.
  • [34] Van de Velde K., Kiekens P., “Biopolymers: overview of several properties and consequences on their applications”. Polymer. Testing. 21, 433–442, 2002.
  • [35] Vieira A. C., “Degradation Parameters and Mechanical Properties Evolution”. Ed Brandon M. Johnson and Zachary E. Berkel, “Biodegradable Materials: Production, Properties and Applications”. ISBN: 978-1-61122-804-5, Nova Publisher, 2011.
  • [36] Vieira A. C., Marques A. T., Guedes R. M., Tita V., «Material model proposal for biodegrada- ble materials». Procedia. Engineering. 10, 1597–1602, 2011.
  • [37] Vieira A.C., Guedes R.M., Marques A.T., “Development of ligament tissue biodegradable devices: A review”. J. Biomech. 42, 2421–2430, 2009.
  • [38] Vieira A.C., Vieira J.C., Ferra J., Magalhães F.D., Guedes R.M., Marques A.T., “Mechanical study of PLA–PCL fibers during in vitro degradation”. J. Mech. Behav. Biomed. 4, 451-60, 2011.
  • [39] Yew G. H., Yuzof A.M., Ishak Z.A., Ishiaku U.S., “Water absorption and enzymatic degradation of poly(lactic acid)/rice starch composites”. Polym. Degrad. Stab. 90, 488- 500, 2005.
  • [40] Zhang X., Hua H., Shen X., Yang Q., “In vitro degradation and biocompatibility of poly( L-lactic acid)/chitosan fiber composites”. Polymer. 48, 1005-1011, 2007.
  • [41] Zilberman M., “Novel composite Wber structures to provide drug/protein delivery for medical implants and tissue regeneration”. Acta. Biomaterialia. 3, 51–57, 2007.
  • [42] Zuideveld M., Gottschalk C., Kropfinger H., Thomann R., Rusu M., Frey H., “Miscibility and properties of linear poly(L-lactide)/branched poly(L-lactide) copolyester blends”. Polymer. 47, 3740–3746, 2006.
Como citar:

Vieira, A. C.; Guedes, R. M.; Marques, A. T.; Tita, V.; "MATERIAL MODEL PROPOSAL FOR THE DESIGN OF BIODEGRADABLE PLASTIC STRUCTURES", p. 2512-2529 . In: In Proceedings of the 10th World Congress on Computational Mechanics [= Blucher Mechanical Engineering Proceedings, v. 1, n. 1]. São Paulo: Blucher, 2014.
ISSN 2358-0828, DOI 10.5151/meceng-wccm2012-18893

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações