Full Article - Open Access.

Idioma principal


Botha, N.; Kok, S.; Inglis, H. M.;

Full Article:

Glaucoma is the second leading cause of irreversible blindness. The primary indicator for glaucoma is an elevated intraocular pressure, which is estimated by means of contact or non-contact tonometry. However, these techniques do not accurately account for the cornea properties that deviate from the norm, thus leading to the inaccurate estimation of the intraocular pressure. This work builds on a previous study, in which a combination of an artificial neural network and a genetic algorithm was used to estimate the intraocular pressure and cornea properties. This paper proposes to use proper orthogonal decomposition to accurately estimate the intraocular pressure independent of the cornea properties. The results indicate that proper orthogonal decomposition is able to estimate the intraocular pressure, and that the cornea properties have a slight influence on the estimation. For thicker corneas, however, the intraocular pressure prediction is influenced. This study concluded that this deterministic technique avoids the ambiguity that could result from a method relying on a stochastic optimization routine.

Full Article:

Palavras-chave: intraocular pressure, glaucoma, cornea, proper orthogonal decomposition, anisotropic material.,


DOI: 10.5151/meceng-wccm2012-18292

Referências bibliográficas
  • [1] Carney L.G., Mainstone J.C., Henderson B.A., “Corneal Topography and Myopia: A Cross-Sectional Study”. Investigative Ophthalmology Andamp; Visual Science. 38, 311-320, 1997.
  • [2] De Moraes C.G.V., Prata T.S., Liebmann J., Ritch R., “Modalities of Tonometry and their Accuracy with Respect to Corneal Thickness and Irregularities”. Journal of Optomology. 1, 43-49, 2008.
  • [3] Dhondt G.D.C., “Calculix: A Free Software three-dimensional structural finite element program”. 1998.
  • [4] Elsheikh A., Wang D., Kotecha A., Brown M., Garway-Heath D., “Evaluation of Goldmann Applanation Tonometry using a nonlinear finite element ocular model”. Annals of Biomedical Engineering. 34, 1628-1640, 2006.
  • [5] Elsheikh A., Wang D., Pye D., “Determination of the Modulus of Elasticity of the Human Cornea”. Journal of Refractive Surgery. 23, 808-818, 2007.
  • [6] Ghaboussi J., Kwon T.H., Pecknold D.A., Hashash Y., “Accurate intraocular pressure prediction from applanation response data using genetic algorithm and neural networks”. Journal of Biomechanics. 42, 2301-2306, 2009.
  • [7] Goldmann H., Schmidt T.H., “Über Applanationstonometrie”. (Ophthalmologica. 134, 221-242, 1957), in Classic Papers in Glaucoma, Ritch R., Caronia R.M. (eds.), Kugler Publications, The Hague, The Netherlands, 2000.
  • [8] Kniestedt C., Punjabi O., Lin S., Stamper R.L., “Tonometry through the ages”. Survey of Ophthalmology. 53, 568-590, 200
  • [9] Kwon T.H., Ghaboussi J., Pecknold D.A., Hashash Y.M.A., “Effect of cornea material stiffness on measured intraocular pressure”. Journal of Biomechanics. 41, 1707-1713, 2008.
  • [10] Liang Y.C., Lee H.P., Lim S.P., Lin W.Z., Lee K.H., Wu C.G., “Proper orthogonal decomposition and its application – Part 1: Theory”. Journal of Sound and Vibration. 252, 527 – 544, 2002.
  • [11] Liou H.L., Brennan N.A., “Anatomically accurate, finite model eye for optical modeling”. Journal of the Optical Society of America. 14, 1684-1695, 1997.
  • [12] Liu J., Roberts C.J., “Influence of corneal biomechanical properties on intraocular pressure measurement”. Journal of Cataract and Refractive Surgery. 31, 146-155, 2005.
  • [13] Pandolfi A., Holzapfel G.A., “Three-Dimensional Modeling and Computational Analysis of the Human Cornea Considering Distributed Collagen Fibril Orientations”. Journal of Biomechanical Engineering. 130, 061006-1 – 061006-12, 2008.
  • [14] Quigley H.A., Broman A.T., “The number of people with glaucoma worldwide in 2010 and 2020”. British Journal of Ophthalmology. 90, 262-267, 2006.
  • [15] Rodrigues M.M., Warring III G.O., Hackett J., Donohoo P., “Cornea”. In Ocular Anatomy, Embryology and Teratology, Jakobiec F.A. (ed). Harper Andamp; Row Publishers, Inc., Philadelphia, 1982.
Como citar:

Botha, N.; Kok, S.; Inglis, H. M.; "INTRAOCULAR PRESSURE ESTIMATION USING PROPER ORTHOGONAL DECOMPOSITION", p. 1169-1180 . In: In Proceedings of the 10th World Congress on Computational Mechanics [= Blucher Mechanical Engineering Proceedings, v. 1, n. 1]. São Paulo: Blucher, 2014.
ISSN 2358-0828, DOI 10.5151/meceng-wccm2012-18292

últimos 30 dias | último ano | desde a publicação