fevereiro 2015 vol. 1 num. 2 - XX Congresso Brasileiro de Engenharia Química

Artigo - Open Access.

Idioma principal

High-pressure phase equilibrium data for the pseudo-binary systems propane + L-lactide at different ethanol to L-lactide molar ratios



The biopolymer poly(L,L-lactide) (PLLA) have received increased attention due to their potential application in the medicine and food industries. The PLLA have very promising properties - bioresorbable and biocompatible properties in the human body - and are easily synthesized from components available from renewable sources. This polymer can be manufactured by different polymerization routes, amoung which we highlight the enzyme-catalyzed ring-opening polymerization of L,L-lactide in compressed fluid. The aim of this work was to report the phase equilibrium data of the pressurized propane(1) + L,L-lactide(2) at two ethanol to monomer molar ratios (9:1 and 7:1). The phase equilibrium experiments were conducted in a high pressure variable-volume view cell employing the static synthetic method. The liquid-vapor equilibrium for the pseudo-binary systems was determined in the temperature range 323-353K and pressure up to 3.04MPa. For the systems investigated the liquid-vapor equilibrium (VLE) were visually recorded. It was observed that an increase in temperature or in propane concentration led to pronounced raise in transition pressure values. While an increase in the ethanol to L,L-lactide molar ratio leads to a reduction in the pressure transition. In addition, a reduction in the concentration of ethanol in the system complicates the solubility of the system.



DOI: 10.5151/chemeng-cobeq2014-1504-18974-139823-fi

Referências bibliográficas
  • [1] AVÉROUS, L. Polylactic Acid: Synthesis, Properties and Applications. Monomers, Polymers and Composites from Renewable Resources, c. 21, p. 433-450, 2008.
  • [2] BENDER, J. P.; FEITEIN, M.; MAZUTTI, M. A.; FRANCESCHI, E.; CORAZZA, M. L. OLIVEIRA, J. V. Phase behaviour of the ternary system {poly(-caprolactone) + carbon dioxide + dichloromethane}. Journal of Chemical Thermodynamics, v. 42 p. 229-233, 2010.
  • [3] BENDER, J. P.; FEITEN, M.; FRANCESCHI, E.; CORAZZA, M. L.; OLIVEIRA, J. V. Phase behaviour of binary systems of lactones in carbon dioxide. J. Chem.Thermodynamics, v. 42, p. 48-53, 2010.
  • [4] BORGES, G. R.; JUNGES, A.; FRANCESCHI, E.; CORAZZA, F. C.; CORAZZA, M. L.; OLIVEIRA, J. V.; DARIVA, C. High-pressure vapor-liquid equilibrium data for systems involving carbon dioxide + organic solvent + β-carotene, Journal of Chemical Engineering Data, v. 52, p. 1437-1441, 2007.
  • [5] CEPPATELLI, M.; FREDIANI, M.; BINI, R. High-Pressure Reactivity of L,L-Lactide. Journal of Physical Chemistry B., v. 115, p. 2173-2184, 2011.
  • [6] CHEN, C. C.; CHUEH, J. Y.; TSENG, H.; HUANG, H. M.; LEE, S. Y. Preparation and characterization of biodegradable PLA polymeric blends. Biomaterials v. 24, p. 1167-1173, 2003.
  • [7] DARIVA, C.; PINTO, J. C.; TAVARES, F. W.; OLIVEIRA, J. V. Phase behavior of polypropylene samples with hydrocarbon solvents at high pressures. J. Appl. Pol. Sci., v. 81 p. 3044-3055, 2001.
  • [8] Área temática: Engenharia das Separações e Termodinâmica 7DATTA, R.; Tsai, S. -P. Bonsignore, P.; Moon, S. -H.; Frank, J. R. Technological and economic potential of poly(lactic acid) and lactic acid derivatives. FEMS Microbiology Reviews, v. 16, p. 221-231, 1995.
  • [9] GREGOROWICZ, J. Phase behaviour of L-lactide in supercritical carbon dioxide at high pressures. Journal of Supercritical Fluids, v. 46, p. 105–111, 2008.
  • [10] GREGOROWICZ, J.; BERNATOWICZ, P. Phase behaviour of L-lactic acid based polymers of low molecular weight in supercritical carbon dioxide at high pressures, Journal of Supercritical Fluids, v. 51, p. 270–277, 2009.
  • [11] GUPTA, A. P.; KUMAR, V. New emerging trends in synthetic biodegradable polymers - Polylactide: A critique. European Polymer J., v. 43, p. 4053-4074, 2007.
  • [12] LANGER, M.; Brown, R.; Urie, M.; Leong, J.; Stracher, M.; Shapiro, J. Large scale optimization of beam weights under dose-volume restrictions. Int. J. Radiat. Oncol. Biol. Phys., v. 18, p. 887-893, 1990.
  • [13] LEE, J. M.; LEE, B. Phase Behavior of Poly(L-lactide) in Supercritical Mixtures of. J. Chem. Eng. Data, v. 45, p. 1162-1166, 2000.
  • [14] LOPEZ-LUNA, A.; GALLEGOS, J. L.; GIMENO, M.; VIVALDO-LIMA, E.; BÁRZANA, E. Lipase-catalyzed syntheses of linear and hyperbranched polyesters using compressed fluids as solvent media, Journal of Molecular Catalysis B: Enzymatic, v. 67, p. 143–149, 2010.
  • [15] MA, H.; OKUDA, J. Kinetics and Mechanism of L-Lactide Polymerization by Rare Earth Metal Silylamido Complexes:  Effect of Alcohol Addition. Macromolecules, v. 38, p. 2665-2673, 2005.
  • [16] RISSANEN, M.; Puolakka, A.; Nousiainen, P.; Kellomäki, M.; Ellä V. Solubility and phase separation of poly(L,D-lactide) copolymers. Journal of Appied Polymer Science, v. 110, p. 2399-2404, 2008.
  • [17] SOSNOWSKI, S.; GADZINOWSKI, M.; SLOMKOWSKI, S. Poly(L,L-lactide) Microspheres by Ring-Opening Polymerization. Macromolecules, v. 29, p. 4556-4564, 1996.
  • [18] STUART, G. R.; DARIVA, C.; OLIVEIRA, J. V. High-pressure vapor-liquid equilibrium data for CO2-orange peel oil, Brazilian Journal of Chemical Engineering, v. 17 p. 181-189, 2000.
  • [19] TOKIWA, Y.; CALABIA, B. P. Biodegradability and biodegradation of poli(lactide). Applied Microbiology and Biotechnology, v. 72, p. 244-251, 2006.
Como citar:

BENDER, J. P.; FLORES, D. Z.; TRÊS, M. V.; OLIVEIRA, J. V.; FERREIRA, S. R. S.; "High-pressure phase equilibrium data for the pseudo-binary systems propane + L-lactide at different ethanol to L-lactide molar ratios", p. 15752-15759 . In: Anais do XX Congresso Brasileiro de Engenharia Química - COBEQ 2014 [= Blucher Chemical Engineering Proceedings, v.1, n.2]. São Paulo: Blucher, 2015.
ISSN 2359-1757, DOI 10.5151/chemeng-cobeq2014-1504-18974-139823-fi

últimos 30 dias | último ano | desde a publicação