Fevereiro 2015 vol. 1 num. 2 - XX Congresso Brasileiro de Engenharia Química

Artigo - Open Access.

Idioma principal

HIDROGÉIS HETEROGÊNEOS E HÍBRIDOS PARA APLICAÇÕES EM ENGENHARIA TECIDUAL

PASSOS, M. F. ; DIAS, C. G. B. T. ; MACIEL FILHO, R. ;

Artigo:

A carência de enxertos disponíveis, na reparação de tecidos doentes e/ou danificados, assim como a ineficácia de alguns transplantes alogênicos, desperta o interesse dos pesquisadores para a geração de tecidos autólogos, através de novas abordagens em engenharia. Porém, esta não é uma tarefa fácil. O desenvolvimento destes materiais, visando Engenharia Tecidual (ET), leva em consideração a complexidade de órgãos e tecidos. A fim de solucionar este problema, hidrogéis poliméricos convencionais, homo ou copolímeros, vêm disputando espaço com hidrogéis heterogêneos, na busca incessante de obter biomateriais para aplicações médicas. Esta nova classe de hidrogéis confere propriedades específicas dos materiais combinados, permitindo melhora nas propriedades mecânicas e superficiais. A viabilidade dos mesmos engloba desde aplicação como scaffolds até sistema de liberação controlada de fármacos. A fim de elucidar as diferentes aplicações destes materiais em ET, este trabalho apresenta os fundamentos teóricos dos hidrogéis heterogêneos, derivados, principalmente, das redes inter e semi-interpenetrantes.

Artigo:

Palavras-chave:

DOI: 10.5151/chemeng-cobeq2014-1921-16859-170090

Referências bibliográficas
  • [1] BAE, Y. H.; KIM, S. W. Hydrogel delivery systems based on polymer blends, block co-polymers or interpenetrating networks. - Advanced Drug Delivery Reviews 11: 109-135, 1993.
  • [2] BRAY, J.C.; MERRYL, E.W. Poly (vinyl alcohol) hydrogels for synthetic articular cartilage material. Journal of biomedical Materials Research, 7, p.431-443, 1973.
  • [3] CASOLARO, M.; CASOLARO, I.; LAMPONI, S. Stimuli-responsive hydrogels for controlled pilocarpine ocular delivery. - European Journal of Pharmaceutics and Biopharmaceutics 80: 553-561, 2012.
  • [4] CHANG, C.; PENG, N.; HE, M.; TERAMOTO, Y.; NISHIO, Y.; ZHANG, L. Fabrication and properties of chitin/hydroxyapatite hybrid hydrogels as scaffold nano-materials. - Carbohydrate Polymers 91: 7-13, 2013.
  • [5] CHIEN, H.-W.; TSAI, W.-B.; JIANG, S. Direct cell encapsulation in biodegradable and functionalizable carboxybetaine hydrogels. - Biomaterials 33: 5706-5712, 2012.
  • [6] CHIKH, L.; DELHORBE, V.; FICHET, O. (Semi-)Interpenetrating polymer networks as fuel cell membranes. - Journal of Membrane Science 368: 1-17, 2011.
  • [7] COSTA, R. O. R.; VASCONCELOS, W. L. Structural modification of poly(2-hydroxyethyl methacrylate)-silica hybrids utilizing 3-methacryloxypropyltrimethoxysilane. Journal of Non-Crystalline Solids, 304, p. 84-91, 2002.
  • [8] COSTANTINI, A.; LUCIANI, G.; SILVESTRI, B.; TESCIONE, F.; BRANDA, F. Bioactive poly(2-hydroxyethylmethacrylate)/silica gel hybrid nanocomposites prepared by sol-gel process. Journal of Biomedical Materials Research Part B: Applied Biomaterials , vol. 86B issue 1, p. 98-104, 200
  • [9] DELHORBE, V.; CAILLETEAUB, C.; CHIKH, LINDA.; GUILLERMO, A.; GEBEL, G.; MORIN, A.; FICHET, O. Influence of the membrane treatment on structure and properties of sulfonated poly(etheretherketone)semi-interpenetratingpolymernetwork. Journal of Membrane Science, 427, p. 283–292, 2013.
  • [10] FUKUSHIMA, K.; TABUANI, D.; ABBATE, C.; ARENA, M.; RIZZARELLI, P. Preparation, characterization and biodegradation of biopolymer nanocomposites based on fumed silica. - European Polymer Journal 47: 139-152, 2011.
  • [11] THANKAM G., F.; MUTHU, J.; SANKAR, V.; GOPAL, K. R. Growth and survival of cells in biosynthetic poly vinyl alcohol–alginate IPN hydrogels for cardiac applications. - Colloids and Surfaces B: Biointerfaces 107: 137-145, 2013.
  • [12] GRIFFITH, L. G. Polymeric biomaterials. - Acta Materialia 48: 263-277, 2000.
  • [13] HAN, S.-I.; LIM, J. S.; KIM, D. K.; KIM, M. N.; IM, S. S. In situ polymerized poly(butylene succinate)/silica nanocomposites: Physical properties and biodegradation. - Polymer Degradation and Stability 93: 889-895, 2008.
  • [14] HIEMSTRA, C.; ZHONG, Z.; VAN TOMME, S. R.; VAN STEENBERGEN, M.J; JACOBS, J.J,; OTTER, W.D., HENNINK,W.E.;FEIJEN, J. In vitro and in vivo protein delivery from in situ forming poly(ethylene glycol)–poly(lactide) hydrogels. - Journal of Controlled Release 119: 320-327, 2007.
  • [15] Área temática: Engenharia de Materiais e Nanotecnologia 7KOUL, V.; MOHAMED, R.; KUCKLING, D.; ADLER, H.-J. P.; CHOUDHARY, V. Interpenetrating polymer network (IPN) nanogels based on gelatin and poly(acrylic acid) by inverse miniemulsion technique: Synthesis and characterization. - Colloids and Surfaces B: Biointerfaces 83: 204-213, 2011.
  • [16] KOZHUNOVA, E. Y.; MAKHAEVA, E. E.; KHOKHLOV, A. R. Collapse of thermosensitive polyelectrolyte semi-interpenetrating networks. - Polymer 53: 2379-2384, 2012.
  • [17] LIU, W.; CAO, Y. 5.28 - Tissue-Engineering Technology for Tissue Repair and Regeneration. In: Editor-in-Chief: Murray, M.-Y., (Ed.) Comprehensive Biotechnology (Second Edition), pp. 353-375. Academic Press, Burlington, 2011.
  • [18] LOUREIRO, F.A.M.; PEREIRA, R.P.; ROCCO, A.M. – “Cinética de cura de redes poliméricas semi-interpenetrantes baseadas em bisfenol-a e PEI”, in: XIX Congresso Brasileiro de Engenharia Química (COBEQ), Búzios-RJ, p. 7763- 7771, 2012.
  • [19] MOSZCZYŃSKI, P.; KALITA, M.; PARZUCHOWSKI, P.; SIEKIERSKI, M.; WIECZOREK, W. Interpenetrating ionomer–polymer networks obtained by the in situ polymerization in pores of PVdF sponges as potential membranes in PEMFC applications, Journal Power Sources, 173, p. 648, 2007.
  • [20] NIZAM EL-DIN, H. M. M.; EL-NAGGAR, A. W. M. Radiation synthesis of acrylic acid/polyethyleneimine interpenetrating polymer networks (IPNs) hydrogels and its application as a carrier of atorvastatin drug for controlling cholesterol. - European Polymer Journal 48: 1632-1640, 2012.
  • [21] NOGUEIRA, N.; CONDE, O.; MIÑONES, M.; TRILLO, J. M.; MIÑONES JR, J. Characterization of poly(2-hydroxyethyl methacrylate) (PHEMA) contact lens using the Langmuir monolayer technique. - Journal of Colloid and Interface Science 385: 202-210, 2012.
  • [22] PATEL, A.; MEQUANINT. K. Synthesis and characterization of polyurethane-block-poly (2-hydroxyethyl methacrylate) hydrogels and their surface modification to promote cell affinity. Journal of Bioactive and Compatible Polymers, 26, p. 114- 129, 2011.
  • [23] PESCOSOLIDO, L.; VERMONDEN, T.; MALDA, J.; CENSI, R.; DHERT, W.J.; ALHAIQUE, F.; HENNINK, W.E.; MATRICARDI, P. In situ forming IPN hydrogels of calcium alginate and dextran-HEMA for biomedical applications. - Acta Biomaterialia 7: 1627-1633, 2011.
  • [24] RATNA, D.; KARGER-KOCSIS, J. Shape memory polymer system of semi-interpenetrating network structure composed of crosslinked poly (methyl methacrylate) and poly (ethylene oxide). - Polymer 52: 1063-1070, 2011.
  • [25] REMYA, N. S.; NAIR, P. D. Engineering cartilage tissue interfaces using a natural glycosaminoglycan hydrogel matrix- an invitro study. - Materials Science and Engineering: C., 2012.
  • [26] SANGERMANO, M.;COOK, W. D.; PAPAGNA, S.; GRASSINI, S. Hybrid UV-cured organic–inorganic IPNs. - European Polymer Journal 48: 1796-1804, 2012.
  • [27] SASADA, T. - Abstracts of Third World Biomaterials Congress. Biomechanics and Biomaterials, 6, p. 21-25, 1988.
  • [28] SILAN, C.; AKCALI, A.; OTKUN, M. T.;OZBEY, N.; BUTUN, S.; OZAY, O.; SAHINER, N. Novel hydrogel particles and their IPN films as drug delivery systems with antibacterial properties. - Colloids and Surfaces B: Biointerfaces 89: 248-253, 2012.
  • [29] SPILLER, K. L.; LAURENCIN, S. J.; CHARLTON, D.; MAHER, S. A.; LOWMAN, A. M. Superporous hydrogels for cartilage repair: Evaluation of the morphological and mechanical properties. - Acta Biomaterialia 4: 17-25, 2008.
  • [30] VALLÉS-LLUCH, A.; COSTA, E.; GALLEGO FERRER, G.; MONLEÓN PRADAS, M.; SALMERÓN-SÁNCHEZ, M. Structure and biological response of polymer/silica nanocomposites prepared by sol–gel technique. - Composites Science and Technology 70: 1789-1795, 2010a. VALLÉS-LLUCH, A.; FERRER, G. G.; PRADAS M. M. Surface modification of P(EMA-co-HEA)/SiO2 nanohybrids for faster hydroxyapatite deposition in simulated body fluid? .Colloids and Surfaces B: Biointerfaces 70(2): 218-25, 2009.
  • [31] VALLÉS-LLUCH, A.; RODRÍGUEZ-HERNÁNDEZ, J. C.; FERRER, G. G.; PRADAS, M. M. Synthesis and characterization of poly(EMA-co-HEA)/SiO2 nanohybrids. European Polymer Journal, 46, p. 1446-1455, 2010b. WITCHERLE, O.; LIM, D. Hydrophilic gels for biological use. Nature, v.185, p. 117–118,1960.
  • [32] WU, W.; LIU, J.; CAO, S.; TAN, H.; LI, J.; XU, F.; ZHANG, X. Drug release behaviors of a pH sensitive semi-interpenetrating polymer network hydrogel composed of poly(vinyl alcohol) and star poly[2-(dimethylamino)ethyl methacrylate]. - International Journal of Pharmaceutics 416: 104-109, 2011.
  • [33] ZHANG, X.;GAO, C.; LIU, M.;HUANG, Y.; YU, X.; DING, E. Synthesis and characterization of asymmetric polymer/inorganic nanocomposites with pH/temperature sensitivity. - Applied Surface Science, 264, p. 636-643, 2013.
Como citar:

PASSOS, M. F.; DIAS, C. G. B. T.; MACIEL FILHO, R.; "HIDROGÉIS HETEROGÊNEOS E HÍBRIDOS PARA APLICAÇÕES EM ENGENHARIA TECIDUAL", p. 14307-14314 . In: Anais do XX Congresso Brasileiro de Engenharia Química - COBEQ 2014 [= Blucher Chemical Engineering Proceedings, v.1, n.2]. São Paulo: Blucher, 2015.
ISSN 2359-1757, DOI 10.5151/chemeng-cobeq2014-1921-16859-170090

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações