Full Article - Open Access.

Idioma principal


Brandão, D. N.; Buscaglia, G.; Kischinhevsky, M.; Ruas, V.;

Full Article:

Traditionally Hermite finite element methods have been used to solve PDE’s of order higher than two. The goal of this work is to show that this technique is very useful for solving second order PDE’s too, whenever the direct determination of quantities expressed in terms of the derivatives of the solution, such as curvatures and fluxes is necessary. Emphasis will be given to applications of these discretization methods in the framework of flows on curved manifolds and flows in highly heterogeneous porous media. Corresponding error analyses and illustrative numerical results are given.

Full Article:

Palavras-chave: Finite elements, Hermite, incompressible flow, porous media.,


DOI: 10.5151/meceng-wccm2012-19628

Referências bibliográficas
  • [1] Adams, R.A., Sobolev Spaces. Academic Press, 1975.
  • [2] Brasil Jr., A.P., Ruas, V. and Trales, P.R., An explicit method for convection-diffusion equations. Japan Journal of Industrial and Applied Mathematics, 26-1-4, 65-91, 2009.
  • [3] Buscaglia, G. and Ruas, V., Finite element solution of the Stokes system with an N- simplex of the Zienkiewicz type. To appear.
  • [4] Ciarlet, P.G. The Finite Element Method for Elliptic Problems. North Holland, Amsterdam, 1978.
  • [5] Douglas Jr., J. and Wang, J., An Absolutely Stabilized Finite Element Method for the Stokes Problem. Mathematics of Computation, 52-186, 495-508, 1989.
  • [6] Hood, P. and Taylor, C., Navier-Stokes equations using mixed interpolation. In: Finite Element Methods in Flow Problems, J. T. Oden, J.T., Gallagher, R.H., Zienkiewicz, O.C. and Taylor, C., eds., University of Alabama in Huntsville Press, 121–132, 1974.
  • [7] Hughes, T.J.R., Franca, L. and Balestra, M., A new finite element formulation for computational fluid dynamics,: V. Circumventing the Babu?ska-Brezzi condition: A stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations. Comp. Meth. Appl. Mechs. Engin., 59, 85-99, 1986.
  • [8] Raviart, P.-A. and Thomas,J.-M., Mixed Finite Element Methods for Second Order Elliptic Problems. Lecture Notes in Mathematics, Springer Verlag, 606, 292–315, 1977.
  • [9] Ruas, V. and Carneiro de Araujo, J.H., Primal finite element solution of second order problems in three-dimension space with normal stress/flux continuity. Zeitschrift f ür Angewandte Mathematik und Mechanik, 87, 480-485, 2007.
  • [10] Ruas, V. and Carneiro de Araujo, J.H., A quadratic triangle of the Hermite type for second order elliptic problems. ZAMM, 89-6, 445-453, 2009.
  • [11] Ruas, V., A modified lowest-order Raviart-Thomas mixed element with enhanced convergence. In: International Conference of Numerical Analysis and Applied Mathematics, Halkidiki (Thessaloniki). AIP Conf. Proc., 1389, p. 207-210; doi:http://dx.doi.org/10.1063/1.3636703, 20
  • [12] Tabata, M. and Ueda, Y., A set of variant Hermite tetrahedral elements for threedimensional problems. Journal of Math-for-industry, 1-B-6, 131–138, 2009.
  • [13] Zienkiewicz, O.C., The finite element method, McGraw Hill, 1967.
Como citar:

Brandão, D. N.; Buscaglia, G.; Kischinhevsky, M.; Ruas, V.; "HERMITE", p. 3906-3912 . In: In Proceedings of the 10th World Congress on Computational Mechanics [= Blucher Mechanical Engineering Proceedings, v. 1, n. 1]. São Paulo: Blucher, 2014.
ISSN 2358-0828, DOI 10.5151/meceng-wccm2012-19628

últimos 30 dias | último ano | desde a publicação