Full Article - Open Access.

Idioma principal


Nishiguchi, K.; Maeda, K.; Okazawa, S.;

Full Article:

This paper presents a novel simulation method for the large deformation behavior of pressure-sensitive adhesives (PSAs). The focus is on visco-hyperelasticity and temperaturedependence of PSAs. All the basic equations are numerically solved in the Eulerian framework because it allows arbitrarily large deformations. Visco-hyperelasticity is formulated using Simo’s finite-strain viscoelastic model, where hyperelasticity is modeled as a novel strain energy function of the left Cauchy-Green deformation tensor. The left Cauchy-Green deformation tensor is temporally updated from the Eulerian velocity field. Temperature-dependence is described with the time-temperature superposition principle of Williams, Landel, and Ferry. To validate the proposed approach, we simulate uniaxial tension tests under different tensile speed and temperature conditions.

Full Article:

Palavras-chave: Eulerian formulation, Large deformation, Hyperelasticity, Adhesive,


DOI: 10.5151/meceng-wccm2012-18882

Referências bibliográficas
  • [1] Y. Urahama, “Effect of peel load on stringiness phenomena and peel speed of pressuresensitive adhesive tape”, The Journal of Adhesion, 31, 47-58, 1989.
  • [2] A. Zosel, “Adhesive failure and deformation behavior of polymers”, The Journal of Adhesion, 30, 135-149, 1989.
  • [3] D. Satas, Handbook Of Pressure Sensitive Adhesive Technology, Springer, 1989.
  • [4] K. Nishiguchi, K. Maeda, S. Okazawa, S. Tanaka, “A visco-hyperelastic analysis scheme by using a full Eulerian finite element method for dynamics of pressure-sensitive adhesives”, Transactions of The Japan Society of Mechanical Engineers Series A, accepted, 2012 (in Japanese).
  • [5] D. J. Benson, “Computational methods in Lagrangian and Eulerian hydrocodes”, Computer Methods in Applied Mechanics andEngineering, 99, 235-394, 1992.
  • [6] H. Smith, Elastic and creep properties of filamentous materials and other high polymers, The Textile Foundation in Washington, 1944.
  • [7] J. D. Ferry, “Mechanical properties of substances of high molecular weight. VI. dispersion in concentrated polymer Solutions and its Dependence on Temperature and Concentration”, J. Am. Chem. Soc., 72, 3746-3752, 1950.
  • [8] F. Schwarzl, A. J. Staverman, “Time-temperature dependence of linear viscoelastic behavior”, Journal of Applied Physics, 23, 838-843, 1952.
  • [9] S. Glasstone, J. Laidler, H. Eyring, The Theory of Rate Processes (first edition), McGraw- Hill Book Company, 1941.
  • [10] M. L. Williams, R. F. Landel, J. D. Ferry, “The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids”, J. Am. Chem. Soc., 77, 3701-3707, 1955.
  • [11] J. C. Simo, “On a fully three dimensional finite strain viscoelastic damage model: formulation and computational aspects”, Computer Methods in Applied Mechanics and Engineering, 60, 153-173, 1987.
  • [12] Y. Yamashita, S. Kawabata, “Approximated form of the strain energy-density function of carbon-black filled rubbers for industrial applications”, Journal of the Society of rubber Industry, 65, 517-528, 1992 (in Japanese).
  • [13] A. J. Chorin, T. J. R. Hughes, M. F. McCracken, J. E. Marsden, “Product formulas and numerical algorithms”, Communications on Pure and Applied Mathematics, 31, 205-256, 1978.
  • [14] G. A. Holzapfel, Nonlinear solid mechanics / a continuum approach for engineering, 205-256, John Wiley and Sons, 2000.
  • [15] J. Donea, S. Giuliani, J. P. Halleux, “An Arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions”, Comput. Meth. Appl. Mech. Eng., 33, 689-723, 1982.
  • [16] T. J. R. Hughes, “Generalization of selective integration procedures to anisotropic and nonlinear media”, International Journal for Numerical Methods in Engineering, 15, 1413-1418, 1980.
  • [17] B. Van Leer, “Towards the ultimate conservative difference scheme IV: A new approach to numerical convection”, Journal of Computational Physics, 23, 276-299, 1977.
  • [18] C. W. Hirt, B. D. Nichols, “Volume of fluid (VOF) method for the dynamics of free boundaries”, Journal of Computational Physics, 39, 201-225, 1981.
Como citar:

Nishiguchi, K.; Maeda, K.; Okazawa, S.; "FULL EULERIAN FINITE ELEMENT ANALYSIS OF PRESSURE-SENSITIVE ADHESIVES", p. 2497-2511 . In: In Proceedings of the 10th World Congress on Computational Mechanics [= Blucher Mechanical Engineering Proceedings, v. 1, n. 1]. São Paulo: Blucher, 2014.
ISSN 2358-0828, DOI 10.5151/meceng-wccm2012-18882

últimos 30 dias | último ano | desde a publicação