fevereiro 2015 vol. 1 num. 2 - XX Congresso Brasileiro de Engenharia Química

Artigo - Open Access.

Idioma principal

FEASIBILITY OF SUGARS CONSUMPTION FROM HEMICELLULOSE SUGARCANE BAGASSE HYDROLYSATE BY IMMOBILIZED PENTOSE CONVERTING YEASTS IN CALCIUM ALGINATE MATRIX

ANTUNES, F. A. F.; MILESSI, T. S. S.; CHANDEL, A. K.; MORAES, V. P.; WASSANO, L. E.; SILVA, S. S. da;

Artigo:

Hemicellulose, a large available carbohydrate present in sugarcane bagasse, can offer great potential to be used as carbon source on Biotechnology process. However, specific yeasts to convert pentose sugars and operation system are key factors for the hemicellulose hydrolysate converting into bioproducts. This investigation presents the feasibility of sugars consumption from hemicellulosic sugarcane bagasse hydrolysate (HSBH) by two important pentose converting yeasts (S. stipitis NRRL Y-7124 and S. shehatae UFMG-HM 52.2) immobilized in calcium alginate matrix in different conditions. Results showed 99,64 % and 98,66% of sugars consumption in 48h by S. stipitis NRRL Y-7124, when experiments were conducted with 1% and 2% of sodium alginate in the immobilization step. The same experiments using the yeast S. shehatae UFMG-HM 52.2 achieved 99,2% and 98,3% in 72h, respectively. Assays showed the potential of these immobilized yeast by this technical for sugars consumption from

Artigo:

Palavras-chave:

DOI: 10.5151/chemeng-cobeq2014-0097-27056-156455

Referências bibliográficas
  • [1] ALVES, L.A.; FELIPE, M.G.A.; SILVA, J.B.A.; SILVA, S.S.; PRATA, A.M.R. Pretreatment of sugarcane bagasse hemicellulose hydrolisate for xylitol production by Candida guilliermondii. App. Biochem. and Biotech., v.70/72, p.89-98, 1998.
  • [2] ANTUNES, F.A.F.; MILESSI T.S.S.; CHANDEL A.K.; MORAES V.P.; ROSA C.A.; DA SILVA S.S. Evaluation of a new yeast from Brazilian biodiversity, Scheffersomyces shehatae UMFG-HM 52, for pentose sugars conversion into bioethanol. Biochem. Biotech. Reports, v. 2, n. 4., 2013.
  • [3] BALAT, M.; BALAT, H. Recent trends in global production and utilization of bio-ethanol fuel. App. Energ., v.86, p.2273-2282, 2009.
  • [4] CANILHA, L.; CARVALHO, W.; ALMEIDA E SILVA, J.B. Biocatalizadores Imobilizados Uso de células imobilizadas em processos biotecnológicos. Biotec. Ciência e Desenvolv., ano IX, n.36, p.48-57, 2006.
  • [5] GÍRIO, F.M.; FONSECA, C.; CARVALHEIRO, F.; DUARTE, L.C.; MARQUES, S.; BOGEL-LUKASIK, R. Hemicelluloses for fuel ethanol: A review. Biores. Tech., v.101, p.4775-4800, 2010.
  • [6] JEFFRIES ,T .W. Engineering yeasts for xylose metabolism. Cur. Opin. Biotech. , v.7, p. 320-326, 200
  • [7] KARHUMAA, K.; HAHN-HÄGERDAL, B.; GORWA-GRAUSLUND, M. F. Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering. Yeast, v. 22, p. 359-368,2005.
  • [8] LIMAYEM, A.; RICKE, S. Lignocellulosic biomass for bioethanol production: Current perspectives, potential issues and future prospects. Progress in Energ. and Combust. Sci., v.38, p.449-467, 2012.
  • [9] MEENA, K.; RAJA T. K. Immobilization of Saccharomyces cerevisiae cells by gel entrapment using various metal alginates. W. J. Microb. Biotech., v. 22, n. 6, p. 651-653, 2006.
  • [10] MILESSI T.S.S.; ANTUNES, F.A.F.; CHANDEL A.K.; DA SILVA S.S. Rice bran extract: an inexpensive nitrogen source for the production of 2G ethanol from sugarcane bagasse hydrolysate. 3 Biotech, v.3, p. 373-379, 2013.
  • [11] MOUTTA, R.O.; CHANDEL, A.K.; RODRIGUES, R.C.L.B; SILVA, M.B.; ROCHA, G.J.M.; SILVA, S.S. Statistical optimization of sugarcane leaves hydrolysis into simple sugars by dilute sulfuric acid catalyzed process. Sugar Tech., v.14, n.1, p.53-60, 2012.
  • [12] NIGAM, J.N. Continuous ethanol production from pineapple cannery waste using immobilized yeast cell. J. Biotech., v. 80, 2000.
  • [13] PANDEY, A.; SOCOOL, C.R.; NIGAM, P.; SOCOOL, V. Biotechnological potential of agro-industrial residues. I: sugarcane bagasse. Bior. Tech., v.74, p.69-80, 2000.
  • [14] RILEY, M.R.; MUZZIO, F.J.; BUETTNER, H.M. REYES, S.C. A simple correlation for predicting effective diffusivities in immobilized cell systems. Biotech. Bioengin.. v. 49, p. 223–227, 1996.
  • [15] ROBERTO, I.C.; MUSSATTO, S.I.; RODRIGUES, R.C.L.B. Dilute-acid hydrolysis for optimization of xylose recovery from rice straw in a semi-pilot reactor. Ind. Crops Prod., v.17, p.171-6, 2003.
  • [16] Área temática: Processos Biotecnológicos 7SANTOS, J. C.; SILVA, S. S.; MUSSATTO, S. I.; CARVALHO, W ; CUNHA, M. A. A. Immobilized cells cultivated in semi-continuous mode in a fluidized bed reactor for xylitol production from sugarcane bagasse. W. J. of Microb. Biotech., v. 21, p. 531-535, 2005.
  • [17] SARKAR, N.; GHOSH, S.K.; BANNERJEE, S.; AIKAT K. Bioethanol production from agricultural wastes: an overview. Renew. Energ., v.37, p.19-27, 2012.
  • [18] SENTHURAN, A.; SENTHURAN, V.; MATTIASSON, B.; KAUL, R., Lactic acid fermentation in a reactor using immobilized Lactobacillus casei. Biotech. Bioeng., v. 55, p. 841–853,1997 SILVA, C.R.; ZANGIROLAMI, T.C.; RODRIGUES, J.P.; MATUGI, K.; GIORDANO, R.C.; GIORDANO, R.L.C. Na innovative biocatalyst for production of ethanol from xylose in a continuous bioreactor. Enzyme Microbial Tech., v.50, p.35-42, 2012.
  • [19] SILVA, S.S.; MUSSATO, S.I.; SANTOS, J.C.; SANTOS, D.T.; POLIZEL, J. Cell Immobilization and Xylitol Production using sugarcane bagasse as raw material. Applied Bioch. Biotech., v.141, p. 215-227, 2007.
  • [20] SILVA, V.F.N.; ARRUDA, P.V,; FELIPE, M.G.A.; GONÇALVES, A.R.; ROCHA, G.J.M. Fermentation of cellulosic hydrolysates obtained by enzymatic saccharification of bagasse pretreated by hydrothermal processing. J. Ind. Microb. Biotech., v.38, p.809-817, 2011 TOIVARI M. H.; ARISTIDOU A.; RUOHONEN L.; PENTTILÄ M. Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: importance of xylulokinase (XKS1) and oxygen availability. Metabolic Eng., v.3, p. 236-249, 2001.
  • [21] ZHAO, J.; XIA, L. Ethanol production from corn stover hemicellulosic hydrolysate using immobilized recombinant yeast cells. Biochem. Eng. J., v.49, p.28-32, 2010.
  • [22] ZHAO, X.; ZHANG, L.; LIU, D. Biomass recalcitrance. Part I: the chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocelluloses. Biofuels, Bioprod. Biorefiner., v.6, p.465-482, 2012.
Como citar:

ANTUNES, F. A. F.; MILESSI, T. S. S.; CHANDEL, A. K.; MORAES, V. P.; WASSANO, L. E.; SILVA, S. S. da; "FEASIBILITY OF SUGARS CONSUMPTION FROM HEMICELLULOSE SUGARCANE BAGASSE HYDROLYSATE BY IMMOBILIZED PENTOSE CONVERTING YEASTS IN CALCIUM ALGINATE MATRIX", p. 113-120 . In: Anais do XX Congresso Brasileiro de Engenharia Química - COBEQ 2014 [= Blucher Chemical Engineering Proceedings, v.1, n.2]. São Paulo: Blucher, 2015.
ISSN 2359-1757, DOI 10.5151/chemeng-cobeq2014-0097-27056-156455

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações