Full Article - Open Access.

Idioma principal


Neto, D. M.; Oliveira, M. C.; Menezes, L. F.; Alves, J. L.;

Full Article:

The numerical simulation of problems involving contact with friction between de-formable and rigid bodies is highly dependent of the predicted contact conditions, which are continuously changing during the process. In the case of sheet metal forming processes, the forming tools are assumed to behave rigidly, and thus only the definition of the outer surfaces is required for the simulation. This paper presents the contact search algorithms currently implemented in DD3IMP in-house finite element solver, which has been continuously devel-oped and optimized to simulate sheet metal forming processes. Nowadays, in DD3IMP it is possible to describe the forming tools either using Bézier or Nagata patches, for which dis-tinct contact search algorithms are adopted. The results show that the accuracy and computa-tion cost of both algorithms is similar. The Nagata patch description is more versatile than Bézier since it can be extracted using any combination of CAD and mesh generation software. Besides, the numerical results accuracy is almost independent of the polyhedral mesh gener-ated.

Full Article:

Palavras-chave: Nagata patch, Tool surface description, Contact search algorithm, DD3IMP,


DOI: 10.5151/meceng-wccm2012-19646

Referências bibliográficas
  • [1] Farin G., Curves and Surfaces for Computer-Aided Geometric Design: A Practical Guide. Academic Press, 1997. 00.51522.53Computational time [ h]Biquadratic BézierNagata
  • [2] Hama T., Nagata T., Teodosiu C., Makinouchi A., Takuda H., “Finite-element simulation of springback in sheet metal forming using local interpolation for tool surfaces”. Int. J. Mech. Sci. 50, 175-192, 2008.
  • [3] Konyukhov A., Schweizerhof K., “ Covariant description for frictional contact problems”. Comput. Mech. 35, 190-213, 2005.
  • [4] Lengiewicz J., Stupkiewicz S., Rodic T., Korelc J., Sustaric P., Contact smoothing in sen-sitivity analysis and optimization of multi-body contact problems. Oñate E., Owen D. R. J. Eds. VIII International Conference on Computational Plasticity, Barcelona, 2005.
  • [5] Menezes L. F., Teodosiu C., “Three-dimensional numerical simulation of the deep-drawing process using solid finite elements”. J. Mater. Process. Tech. 97, 100-106, 2000.
  • [6] Nagata T., “Simple local interpolation of surfaces using normal vectors”. Comput. Aided Geom. Des. 22, 327-347, 2005.
  • [7] Neto D. M., Oliveira M. C., Alves J. L., Menezes L. F., Local Interpolation for Tools Sur-face Description. Barlat F., Moon Y. H., Lee M. G. Eds. NUMIFORM 2010, Pohang, 2010.
  • [8] Neto D. M., Oliveira M. C., Menezes L. F., Alves J. L., Evaluating the vertex normal vec-tor in polyhedral mesh using the IGES file format. Andrade-Campos A., Lopes N., Va-lente R. A. F., Varum H. Eds. First ECCOMAS Young Investigators Conference, Aveiro, 2012.
  • [9] Oliveira M. C., Alves J. L., Menezes L. F., “Improvement of a frictional contact algorithm for strongly curved contact problems”. Int. J. Numer. Meth. Engng. 58, 2083-2101, 2003.
  • [10] Oliveira M. C., Alves, J. L., Menezes, L. F., “Algorithms and Strategies for Treatment of Large Deformation Frictional Contact in the Numerical Simulation of Deep Drawing Process”. Arch. Comput. Method Eng. 15, 113-162, 2008.
  • [11] Pietrzak G., Curnier A., “Large deformation frictional contact mechanics: continuum formulation and augmented Lagrangian treatment”. Comput. Meth. Appl. Mech. Eng. 177, 351-381, 1999.
  • [12] Puso M. A., Laursen T. A., “A 3D contact smoothing method using Gregory patches”. Int. J. Numer. Meth. Engng. 54, 1161-1194, 2002.
  • [13] Rogers D. F., An Introduction to NURBS with Historical Perspective, Morgan Kauf-mann Publishers, 2001.
  • [14] Santos A., Makinouchi A., “Contact strategies to deal with different tool descriptions in static explicit FEM of 3-D sheet-metal forming simulation”. J. Mater. Process. Tech. 50, 277-291, 1995.
  • [15] Stadler M., Holzapfel G. A., Korelc J., “Cn continuous modelling of smooth contact surfaces using NURBS and application to 2D problems”. Int. J. Numer. Meth. Engng. 57, 2177-2203, 2003.
  • [16] Wriggers P., “Finite Element Algorithms for Contact Problems”. Arch. Comput. Method Eng. 2, 1-49, 1995.
  • [17] Wriggers P., Krstulovic-Opara L., Korelc J., “Smooth C1-interpolations for two dimen-sional frictional problems”. Int. J. Numer. Meth. Engng. 51, 1469-1495, 2001.
  • [18] Zhuang S., Lee M. G., Keum Y. T., Kim J. H., Wagoner R. H., “Improved contact pro-cedure for implicit finite element sheet forming simulation”. Int. J. Numer. Meth. Engng. 83, 1759-1779, 2010.
Como citar:

Neto, D. M.; Oliveira, M. C.; Menezes, L. F.; Alves, J. L.; "FEA OF FRICTIONAL CONTACT PROBLEMS USING NAGATA PATCHES FOR SURFACES DESCRIPTION", p. 3974-3993 . In: In Proceedings of the 10th World Congress on Computational Mechanics [= Blucher Mechanical Engineering Proceedings, v. 1, n. 1]. São Paulo: Blucher, 2014.
ISSN 2358-0828, DOI 10.5151/meceng-wccm2012-19646

últimos 30 dias | último ano | desde a publicação