fevereiro 2015 vol. 1 num. 2 - XX Congresso Brasileiro de Engenharia Química

Artigo - Open Access.

Idioma principal




ABSTRACT – With the increasing growth of populations prone to wound healing complications there is an urgent need for novel strategies to treat this biomedical burden. A therapeutic approach of particular relevance is Tissue Engineering. It is considered a promising biomedical technology, which aids the regeneration of injured tissues. Bacterial Cellulose (BC) synthesized by Gluconacetobacter hansenii is an excellent platform for epithelial tissue engineering and it is reported to function as a scaffold for the regeneration of a variety of tissues. Our group is focused on the development of biologically and physiologically competent BC biomembranes to be applied for tissue repair strategies. Efficient BC composites were successfully developed and pre-clinical studies were performed. The pre-clinical results confirmed the good potential of the developed BC biomembranes as a compatible engineered scaffold and contributed for a better understanding of its promising application in clinical tests.



DOI: 10.5151/chemeng-cobeq2014-0177-26675-173954

Referências bibliográficas
  • [1] BERTHIAUME, F.; MAGUIRE, T. J.; YARMUSH, M. L. Tissue engineering and regenerative medicine: history, progress, and challenges. Annu Rev Chem Biomol Eng, v.2, p.403-30.
  • [2] 2011.
  • [3] CZAJA, W., KRYSTYNOWICZ, A., BIELECKI, S.ANDBROWNJR, R. Microbial cellulose—the natural power to heal wounds. Biomaterials, v.27, n.2, p.145-151. 2006.
  • [4] CHANG, C. Y.; ZHANG, L. N. Cellulose-based hydrogels: Present status and application prospects. Carbohyd polym, v.84, n.1, Feb 11, p.40-53. 2011.
  • [5] DINI, V.; BERTONE, M.; ROMANELLI, M. Prevention and management of pressure ulcers. Dermatol Ther, v.19, n.6, Nov-Dec, p.356-364. 2006.
  • [6] EMING, S. A.; SMOLA, H.; KRIEG, T. Treatment of chronic wounds: state of the art and future concepts. Cells Tissues Organs, v.172, n.2, p.105-17. 2002.
  • [7] FOHN, M.; BANNASCH, H. Artificial skin. Methods Mol Med, v.140, p.167-82. 200
  • [8] GODINHO, J. F. Hidrogéis de Celulose Bacteriana Incorporados com Frações de Aloe vera. Mestrado, Universidade Federal de Santa Catarina, 2014.
  • [9] GRIFFITH, L. G. Tissue Engineering--Current Challenges and Expanding Opportunities. Science, v.295, n.5557, p.1009-1014. 2002.
  • [10] RISBERG, B. In vivo biocompatibility of bacterial cellulose. J biomed mater res a, v.76A, n.2, p.431-438. 2006.
  • [11] HORCH, R. E.; KNESER, U.; POLYKANDRIOTIS, E.; SCHMIDT, V. J.; SUN, J. M.; ARKUDAS, A. Tissue engineering and regenerative medicine -where do we stand? J Cell Mol Med, v.16, n.6, Jun, p.1157-1165. 2012.
  • [12] KONDO, T.; TOGAWA, E.; BROWN, R. M., JR. "Nematic ordered cellulose": a concept of glucan chain association. Biomacromolecules, v.2, n.4, Winter, p.1324-30. 2001.
  • [13] LANGER, R.; VACANTI, J. P. Tissue engineering. Science, v.260, n.5110, May 14, p.920-6.
  • [14] 1993.
  • [15] MARTSON, M.; VILJANTO, J.; LAIPPALA, P.; SAUKKO, P. Connective tissue formation in subcutaneous cellulose sponge implants in the rat. The effect of the size and cellulose content of the implant. Eur Surg Res, v.30, n.6, p.419-25. 1998.
  • [16] MÜLLER, F. A.; MÜLLER, L.; HOFMANN, I.; GREIL, P.; WENZEL, M. M.; STAUDENMAIER, R. Cellulose-based scaffold materials for cartilage tissue engineering. Biomaterials, v.27, n.21, Jul, p.3955-63. 2006.
  • [17] NADERI, H.; MATIN, M. M.; BAHRAMI, A. R. Review paper: Critical Issues in Tissue Engineering: Biomaterials, Cell Sources, Angiogenesis, and Drug Delivery Systems. J Biomater Appl, v.26, n.4, p.383-4 2011.
  • [18] ORGANIZAÇÃO PAN-AMERICANA DA SAÚDE – OPAS. Fundação Nacional de Saúde. Área temática: Processos Biotecnológicos 7Métodos de investigação epidemiológica em doenças transmissíveis. 1ed. Brasília: FNS, 1997. 182p.RECOUVREUX, D. O. S.; RAMBO, C. R.; BERTI, F. V.; CARMINATTI, C. A.; ANTÔNIO, R. V.; PORTO, L. M. Novel three-dimensional cocoon-like hydrogels for soft tissue regeneration. Mater Sci Eng, v.31, n.2, p.151-157. 2011.
  • [19] SAIBUATONG, O.-A.; PHISALAPHONG, M. Novo aloe vera–bacterial cellulose composite film from biosynthesis. Carbohyd Polym, v.79, n.2, p.455-460. 2010.
  • [20] SVENSSON, A.; NICKLASSON, E.; HARRAH, T.; PANILAITIS, B.; KAPLAN, D. L.; BRITTBERG, M.; GATENHOLM, P. Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials, v.26, n.4, Feb, p.419-31. 2005.
  • [21] WATANABE, M.; KONDO, S. Changing clothes easily: connexin41.8 regulates skin pattern variation. Pigment Cell Melanoma Res, v.25, n.3, May, p.326-30. 2012.
  • [22] WONG, V. W.; GURTNER, G. C. Tissue engineering for the management of chronic wounds: current concepts and future perspectives. Exp Dermatol, v.21, n.10, Oct, p.729-34. 2012.
Como citar:

PAES, C. Q.; GODINHO, J. F.; PIAIA, L.; OLIVEIRA, M. C.; PORTO, L. M.; "EPITHELIAL TISSUE ENGINEERING: FROM DEVELOPING SCAFFOLDS TO CLINICAL TESTS", p. 281-288 . In: Anais do XX Congresso Brasileiro de Engenharia Química - COBEQ 2014 [= Blucher Chemical Engineering Proceedings, v.1, n.2]. São Paulo: Blucher, 2015.
ISSN 2359-1757, DOI 10.5151/chemeng-cobeq2014-0177-26675-173954

últimos 30 dias | último ano | desde a publicação