Full Article - Open Access.

Idioma principal


Bergallo, M. B.; Neuman, C. A.; Sonzogni, V. E.;

Full Article:

The technique of the Composite Mesh has been introduced in the 90’s, as it can be seen in papers by the authors in the IV WCCM held in Buenos Aires. Since then some developments and applications have been made in several kinds of problems. The technique -inspired in the mixtures theory of composite material- is based on the utilization of two finite element meshes of different element size sharing the whole domain. Each mesh is endowed with a participation factor. The composite mesh may be used for two different aims. One of them is to provide a posteriori error estimates, and the other one is to reduce the discretization errors thus leading to improved numerical solutions. For the first case, it is shown that the residues at the connecting points of both meshes serve as a posteriori error estimates being able to detect the regions where mesh adaptation should be conducted. This aspect has been tested in different kind of problems and compared with other error estimates. The composite mesh may be used also to provide an improved numerical solution. This is performed by a suitable choice of the participation factors. Important reduction in the discretization errors has been obtained for a wide class of problems, including those with border singularities. This improved solutions are obtained without increasing the computational cost as the problem size to be solved is of the same order of that for the fine element mesh. Applications have been made to elliptic and parabolic problems in regular domains or in the presence of border singularities. Problems from structural mechanics (elastic analysis of plain stress and plates), as well as catalytic chemical reactors have also been addressed. It can be mentioned that the technique of the composite mesh has been also applied in the frame of multigrid solving, showing interesting reductions in the solution errors, and making use of the fact that mesh with different size are available in the process. In this paper we make a review of the advances in this technique and present some results on different application areas. We include some results both on error estimation and on solution improvement

Full Article:

Palavras-chave: A posteriori error estimation, Composite mesh method. Improved numerical solutions,


DOI: 10.5151/meceng-wccm2012-19804

Referências bibliográficas
  • [1] H. F. Begliardo and V. E. Sonzogni. Aplicaciones del m´etodo de doble malla a problemas de elasticidad bidimensional y placas delgadas. In Proc. MECOM 2002: VII Congreso Argentino de Mecánica Computacional, Santa Fe, Argentina, 28-31 October, pages 1370–1381, 2002.
  • [2] M. Bergallo, C. Neuman, and V. Sonzogni. Composite mesh concept based fem error estimation and solution improvement. Computer Methods in Applied Mechanics in Engineering, 188:755–774, 2000.
  • [3] M. Bergallo, C. Neuman, and V. Sonzogni. Composite mesh fem for parabolic evolution problems. In Proc. ECCOMAS 2000: European Congress on Computational Methods in Applied Sciences and Engineering, Barcelona, 11 al 14 de setiembre, 2000.
  • [4] M. B. Bergallo, C. E. Neuman, and V. Sonzogni. Elliptic problems with essential border singularities: Improved solution and qualitative error estimation. In Proc. ENIEF’94: Congreso sobre Metodos Numericos y sus Aplicaciones, Bariloche, 8-11 noviembre, pages 2979–2998, 200
  • [5] M. B. Bergallo, C. E. Neuman, and V. E. Sonzogni. A finite element error estimation based on the mixed mesh concept. In Proc. IV World Congress in Computational Mechanics, Buenos Aires, Argentina, June 29-July 2, 1998.
  • [6] J. H. Prevost. Mechanics of continuous porous media. International Journal in Engineering Science, 18:787–800, 1980.
  • [7] S. S. Sarraf. Análisis y generalización de la t´ecnica de la malla compuesta y su integración con el m´etodo multigrilla. Tesis doctoral, Universidad Nacional del Litoral, 2011.
  • [8] S. S. Sarraf, M. B. Bergallo, and V. Sonzogni. Integración de la t´ecnica de malla compuesta con el m´etodo multigrilla. In Proc. MECOM 2010, 2010.
  • [9] V. E. Sonzogni, M. B. Bergallo, and C. E. Neuman. Uso de una malla compuesta para estimar errores de discretización y mejorar la solución en elementos finitos. In Proc. MECOM 1996, pages 123–132, 1996.
  • [10] S. Toro, V. Sonzogni, and C. Neuman. Elementos finitos de diferentes ordenes para problemas de elasticidad plana y mezclas de sus mallas. In Proc. MECOM 2005: VII Congreso Argentino de Mecánica Computacional, Buenos Aires, 16-18 noviembre, pages 3171–3186, 2005.
  • [11] R. Verfhurt. A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley –Teubner, Chichester, 1996.
  • [12] O. C. Zienkiewicz and J. Z. Zhu. A simple error estimator and adaptive procedure for practical engineering analysis. International Journal on Numerical Methods in Engineering, 24:337–357, 1987.
  • [13] O. C. Zienkiewicz and J. Z. Zhu. Adaptativity and mesh generation. International Journal on Numerical Methods in Engineering, 32:783–810, 1991.
Como citar:

Bergallo, M. B.; Neuman, C. A.; Sonzogni, V. E.; "DEVELOPMENTS AND APPLICATIONS OF THE TECHNIQUE OF THE COMPOSITE MESH", p. 4302-4314 . In: In Proceedings of the 10th World Congress on Computational Mechanics [= Blucher Mechanical Engineering Proceedings, v. 1, n. 1]. São Paulo: Blucher, 2014.
ISSN 2358-0828, DOI 10.5151/meceng-wccm2012-19804

últimos 30 dias | último ano | desde a publicação