fevereiro 2015 vol. 1 num. 2 - XX Congresso Brasileiro de Engenharia Química

Artigo - Open Access.

Idioma principal




Carbon nanostructures have attracted the attention from scientists of all areas of knowledge because of their unique combination of mechanical, electronic, optical and thermal properties. The understanding of structure-property relationships is fundamental to the development of innovative practical applications of these materials. One of these properties is the thermal expansion coefficient (TEC). Previous studies have shown that the TEC of some carbon nanostructures is anomalous (negative in a certain range of temperature). In this work, the TEC of carbon nanotubes and graphene are calculated using classical molecular dynamics simulations. Different methodologies were applied to compute this property, in order to investigate the most appropriate for this class of materials. Our results showed good agreement with experimental and other theoretical



DOI: 10.5151/chemeng-cobeq2014-1004-21752-154937

Referências bibliográficas
  • [1] 4. CONCLUSIONS We have calculated the TEC of a (10,10) SWCNT and graphene using different MD-based methods to obtain the equilibrium values of their characteristic lengths as function of the temperature. We have shown that ZP and LE methods give results in good agreement with the literature. Although the FE method is simpler and less time consuming than the others, the freedom of the edges to move impedes some flexural modes that contribute to the negative value of the TEC of these carbon nanostructures. The results obtained are encouraging, and this methodology is being applied at this moment in the study of thermal expansion of more complex carbon-based nanostructures. Results will be presented in future publications. 5. ACKNOWLEDGEMENTS AFF acknowledges support from CNPq and FAPESP (grant #2012/10106-8). Área temática: Engenharia das Separações e Termodinâmica 66. REFERENCES ALAMUSI; HU, N.; JIA, B.; ARAI, M.; YAN, C.; LI, J.; LIU, Y.; ATOBE, S.; FUKUNAGA, H. Prediction of thermal expansion properties of carbon nanotubes using molecular dynamics simulations. Computational Materials Science, v. 54, p. 249-254, 2012.
  • [2] ALIEV, A. E.; OH, J.; KOZLOV, M. E.; KUZNETSOV, A. A.; FANG, S.; FONSECA, A. F.; OVALLE, R.; LIMA, M. D.; HAQUE, M. H.; GARTSTEIN, Y. N.; ZHANG, M.; ZAKHIDOV, A. A.; BAUGHMAN, R. H. Giant-Stroke, Superelastic Carbon Nanotube Aerogel Muscles. Science, v, 323, p. 1575-1578, 2009.
  • [3] BAO, W.; MIAO, F.; CHEN, Z.; ZHANG, H.; JANG, W.; DAMES, C.; NING LAU, C. Controlled ripple texturing of suspended graphene and ultrathin graphite membranes. Nature Nanotechnology, v. 4, p. 562-566, 2009.
  • [4] BAUGHMAN, R. H.; ZAKHIDOV, A. A.; DE HEER, W. A. Carbon nanotubes–the route toward applications. Science, v. 297, p. 787-792, 2002.
  • [5] BRENNER, D. W.; SHENDEROVA, O. A.; HARRISON, J. A.; STUART, S. J.; NI, B.; SINNOT, S. B. A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J. Phys.: Condens. Matter, v. 14, p. 783-802, 2002.
  • [6] CAO, G.; CHEN, X.; KYSAR, J. W. Apparent thermal contraction of single-walled carbon nanotubes. Phys. Rev. B, v. 72, art. n. 235404, 2005.
  • [7] CHEN, L.; LIU, C.; LIU, K.; MENG, C.; HU, C.; WANG, J.; FAN, S. High-Performance, low-voltage, and easily-operable bending actuators based on aligned carbon nanotube/polymer composites. ACS Nano v. 5, p. 1588-1593, 2011.
  • [8] DE VOLDER, M. F. L.; TAWFICK, S. H.; BAUGHMAN, R. H.; HART A. J. Carbon Nanotubes: Present and Future Commercial Applications. Science, v. 339, p. 535-539, 2013.
  • [9] ENDO, M.; STRANO, M. S.; AJAYAN, P. M. Potential applications of carbon nanotubes. In Carbon Nanotubes. Berlin: Springer-Verlag Berlin, Vol. 111, p. 13-61, 2008.
  • [10] GEIM, A. K.; NOVOSELOV, K. S. The rise of graphene. Nature Mat. v. 6, p. 183, 2007.
  • [11] GEIM, A. K.; KIM, P. Carbon Wonderland, Scientific American. [online]: http://www.scientificamerican.com/article/carbon-wonderland/, 2008. (Acessed in: April 15, 2014). HU, Y.; CHEN, W.; LU, L. H.; LIU, J. H.; CHANG, C. R. Fibrous nanocomposites of carbon nanotubes and graphene-oxide with synergetic mechanical and actuative performance. ACS Nano, v. 4, p. 3498-3502, 2010.
  • [12] IIJIMA, S. Helical Microtubules of Graphitic Carbon. Nature, v. 354, p. 56-58, 1991.
  • [13] JIANG, H.; LIU, B.; HUANG, Y.; HWANG, K. C. Thermal Expansion of Single Wall Carbon Nanotubes. J. Engineering Materials and Technology, v. 126, p. 265-270 2004.
  • [14] KAHALY, M. U.; WAGHMARE, U. V. Size dependence of thermal properties of armchair carbon nanotubes: A first-principles study. Appl. Phys. Lett., v. 91, art. n. 023112, 2007.
  • [15] Área temática: Engenharia das Separações e Termodinâmica 7KWON, Y. –K.; BERBER, S.; TOMÁNEK, D. Thermal Contraction of Carbon Fullerenes and Nanotubes. Phys. Rev. Lett., v. 92, art. n. 015901, 2004.
  • [16] FOROUGHI, J.; SPINKS, G. M.; WALLACE, G. G.; OH, J.; KOZLOV, M. E.; FANG, S.; MIRFAKHRAI, T.; MADDEN, J. D. W.; SHIN, M. K.; KIM, S. J.; BAUGHMAN, R. H. Torsional Carbon Nanotube Artificial Muscles. Science, v. 334, p. 494-497, 2011.
  • [17] LIMA, M.D.; NA, LI; ANDRADE, M. J.; FANG, S.; JIYOUNG, OH; SPINKS, G. M.; KOZLOV, M. E.; HAINES, C. S.; SUH, D.; FOROUGHI, J.; KIM, S. J.; CHEN, Y.; WARE, T.; SHIN, M. K.; MACHADO, L. D.; FONSECA, A. F.; MADDEN, J. D. W.; VOIT, W. E.; GALVÃO, D. S.; BAUGHMAN, R. H. Electrically, Chemically, and Photonically Powered Torsional and Tensile Actuation of Hybrid Carbon Nanotube Yarn Muscles. Science, v. 338, p. 928-932, 2012.
  • [18] MOUNET, N.; MARZARI, N. First-principles determination of the structural, vibrational and thermodynamic properties of diamond, graphite, and derivatives. Phys. Rev. B, v. 71, art. n. 205214, 2005.
  • [19] NOVOSELOV, K. S.; GEIM, A. K.; MOROZOV, S. V.; JIANG, D.; ZHANG, Y.; DUBONOS, S. V.; GRIGORIEVA, I. V.; FIRSOV, A. A. Electric Field Effect in Atomically Thin Carbon Films. Science, v. 306, p. 666-669, 2004.
  • [20] NOVOSELOV, K. S.; JIANG, D.; SCHEDIN, F.; BOOTH, T. J.; KHOTKEVICH, V. V.; MOROZOV, S. V.; GEIM, A. K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA, v. 102, p. 10451-10453, 2005.
  • [21] PLIMPTON, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comp. Phys., v. 117, p. 1-19 1995.
  • [22] SAITO, R.; DRESSELHAUS, G.; DRESSELHAUS, M. S. Physical Properties of Carbon Nanotubes. London: Imperial College Press, 1998.
  • [23] SCHELLING, P. K.; KEBLINSKI, P. Thermal expansion of carbon structures. Phys. Rev. B, v. 68, art. n. 035425, 2003.
  • [24] SELLINGER, A. T.; WANG, D. H.; TAN, L. -S.; VAIA, R. A. Electrothermal polymer composite actuators. Adv. Mater., v. 22, p. 3430-3435, 2010.
  • [25] SEVIK, C. Assessment on lattice thermal properties of two-dimensional honeycomb structures: Graphene, h-BN, h-MoS2, and h-MoSe2. Phys. Rev. B v. 89, 035422, 2014.
  • [26] SINGH, V.; SENGUPTA, S.; SOLANKI, H. S.; R. DHALL, R.; A. ALLAIN, A.; DHARA, S.; PANT, P.; DESHMUKH, M. M. Probing thermal expansion of graphene and modal dispersion at low-temperature using graphene nanoelectromechanical systems resonators. Nanotechnology, v. 21, art. n. 165204, 2010.
  • [27] YOON, D.; SON, Y. –W.; CHEONG, H. Negative Thermal Expansion Coefficient of Graphene Measured by Raman Spectroscopy. Nano Letters, v. 11, p 3227-3231, 2011.
Como citar:

MUNIZ, A. R.; GUARNETTI, L. J.; FONSECA, A. F.; "DETERMINATION OF THE THERMAL EXPANSION COEFFICIENT OF NANOSTRUCTURED MATERIALS USING MOLECULAR DYNAMICS", p. 15397-15404 . In: Anais do XX Congresso Brasileiro de Engenharia Química - COBEQ 2014 [= Blucher Chemical Engineering Proceedings, v.1, n.2]. São Paulo: Blucher, 2015.
ISSN 2359-1757, DOI 10.5151/chemeng-cobeq2014-1004-21752-154937

últimos 30 dias | último ano | desde a publicação