fevereiro 2015 vol. 1 num. 2 - XX Congresso Brasileiro de Engenharia Química

Artigo - Open Access.

Idioma principal




The kinetics involved in giant bamboo thermal degradation under N2 atmosphere was investigated through non-isothermal thermogravimetric analyses (TGA) and derivative thermogravimetry (DTG) applying three isoconversional methods: Coats and Redfern (CR), MacCallum and Tanner (MT), and van Krevelen (VK). Besides that, samples characterization was conducted by van Soest’s method and by proximate analysis. The TGA experiments were performed with a N2 rate of 50 mL/min and five different heating rates were used: 5, 10, 15, 25 and 50 °C/min, for a samples aged 5.5 years. The van Soest’s test indicated that the giant bamboo is composed of up to 73% of cellulose and the proximate analysis showed up to 84% of volatile matter. The highest weight loss region evaluated by the DTG was between 200-450°C, corresponding to a weight loss range of 10-85% in mass. The Coats-Redfern’s fitting-model indicated that two-dimensional diffusion was the mechanism which best describes the pyrolysis process in the highest weight loss region. The kinetic parameters determined by CR’s, MT’s, and MT’s methods, respectively, varied between 136 and 150 kJ/mol for the activation energy and between 2.75×1010 and 3.6×1011 s-1 for the pre-exponential factor. Comparing the calculated and experimental weight loss, was verified that the CR’s and MT’s average deviations were lower than the evaluated by VK’s method, indicating that the CR’s and MT’s describe better the giant bamboo pyrolysis.



DOI: 10.5151/chemeng-cobeq2014-0888-22805-182639

Referências bibliográficas
  • [1] APARICIO, M. G. et al. Evaluation of steam-treated giant bamboo for production of fermentable sugars. Biotechnology Progress, v. 27, p. 641-9, 201
  • [2] AZZINI, A.; CIARAMELO, D.; SALGADO, A. L. B Velocidade de crescimento dos colmos de algumas espécies de bambu. O Agronômico, v. 41, p. 199-200, 1989.
  • [3] BASU, 2010. Biomass gasification and pyrolysis. Burlington: Academic Press, 2010.
  • [4] COATS, A. W.; REDFERN, J. P. Kinetic Parameters from Thermogravimetric Data. Nature, v. 201, p. 68-71, 196
  • [5] DEMIRBAS, A. Biorefineries: Current activities and future developments. Energy Conversion and Management, [S.l], v. 50, p. 2782-2801, 2009.
  • [6] Área temática: Engenharia de Reações Químicas e Catálise 7 FRAGA, F.; NUNEZ, E. R. Activation Energies for the Epoxy System BADGE n = 0/m-XDA Obtained Using Data from Thermogravimetric Analysis. J. of Applied Polymer Science, v. 80, p. 776-782, 2001.
  • [7] GLASSER, W. G. Fundamentals of biomass thermochemical conversion. Elsevier, 1985.
  • [8] KENG P. C.; WANG, C. P. Flora reipublicae popularis sinicae. Bambusoideae. Science Press, v. 9, p. 155-7, 1996.
  • [9] MACCALLUM, J. R.; TANNER, J. The Kinetics of thermogravimetry. European Polymer J., v. 6, p. 1033-1036, 1970.
  • [10] MASCHIO, G.; KOUFOPANOS, C.; LUCCHESI, A. Pyrolysis, a promising route for biomass utilization. Bioresource Technology, v. 42, p. 219-31, 1992.
  • [11] MCKENDRY, P. Energy production from biomass (Part I): overview of biomass. Bioresource Technology, v. 83, p. 37-46, 2002.
  • [12] PEREIRA, M. A. R.; BERALDO, A.L. Bambu de corpo de alma. Bauru, SP: Editora Canal 6, 2007.
  • [13] PERONDI, D. et al. Thermal decomposition of polymer resin [C29H24N2O5)n]: kinetic parameters and mechanisms. Polymer Degradation and Stability, v. 97, p. 2110-2117, 2012.
  • [14] RAMIAH, M. V. Thermogravimetric and differencial thermal analysis of cellulose, hemicellulose and lignin. J. Applied Polymer Science, v. 14, p. 1323-1337, 1970.
  • [15] RAVEENDRAN, K.; GANESH, A. Heating value of biomass and biomass pyrolysis products. Fuel, v. 75, p. 1715-20, 1996.
  • [16] VAN KREVELEN, D. W. et al. Physicochemical aspects of the pyrolysis of coal and related organic compounds. Fuel, v. 30, p. 253-258, 1951.
  • [17] VARHEGYI, G. et al. Kinetic modeling of biomass pyrolysis. J. of Analytical and Applied Pyrolysis, v. 42, p. 73-87, 1997.
  • [18] WHITE, J. E.; CATALLO, W. J.; LEGENDRE, B. L. Biomass pyrolysis kinetics: A comparative critical review with relevant agriculture residue case studies. J. of Analytical and Applied Pyrolysis, v. 91, p. 1-33, 2011.
  • [19] YAMAN, S. Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy Conversion and Management, v. 45, p. 651-671, 2004.
Como citar:

HOMRICH, P. O. B.; TOSS, D.; GODINHO, M.; PERONDI, D.; BROETTO, C.; FERRARINI, F.; "DETERMINATION OF THE GIANT-BAMBOO PYROLYSIS KINETIC PARAMETERS", p. 10260-10267 . In: Anais do XX Congresso Brasileiro de Engenharia Química - COBEQ 2014 [= Blucher Chemical Engineering Proceedings, v.1, n.2]. São Paulo: Blucher, 2015.
ISSN 2359-1757, DOI 10.5151/chemeng-cobeq2014-0888-22805-182639

últimos 30 dias | último ano | desde a publicação