Full Article - Open Access.

Idioma principal

DESIGN OF COMPLIANT MECHANISMS WITH A SEQUENTIAL ELEMENT REJECTION AND ADMISSION METHOD

Alonso, C.; Ansola, R.; Querin, O.M.; Canales, J.;

Full Article:

A Sequential Element Rejection and Admission (SERA) method to design compliant mechanisms with topology optimization techniques is presented in this work. This procedure, successfully applied to structural optimization problems, allows material to flow between two different material models: ‘real’ and ‘virtual’. This bi-directional method works with two separate criterions for the rejection and admission of elements to efficiently achieve the optimum design. Three benchmark problems are presented here to demonstrate the validity of the proposed method.

Full Article:

Palavras-chave: Optimization, topology, compliant mechanisms, SERA method,

Palavras-chave:

DOI: 10.5151/meceng-wccm2012-19501

Referências bibliográficas
  • [1] Sevak, N.M. and Mclaman, C.W. “Optimal synthesis of flexible link mechanisms with large static deflection”, ASME, Vol. 83, No. 74-Der, 1974.
  • [2] Her, I. and Midha, A. “A compliance number concept for compliant mechanisms and type synthesis”. Journal of Mechanisms. Transmissions and Auromarion in Design. Transactions of the ASME, Vol. 109(3), pp. 348-355, 1987.
  • [3] Howell, L.L. “Compliant mechanisms”. New York: John Wiley Andamp; Sons, 2001.
  • [4] Howell, L. L. and Midha, A. “A generalized loop-closure theory for the analysis and syrithesis of compliant mechanisms”, ASME Machine Elemenrs and Machine Dynamics, Vol. 116, pp.491-500, 199
  • [5] Howell, L. L. and Midha, A. “A method for design of compliant mechanisms with small length flexural pivots” ASME Machine Elemenrs and Machine Dynamics, Vol. 116, pp.280-290, 1994.
  • [6] Ananthasuresh, G. K., Kota, S. and Gianchandani, Y. “A methodical approach to the design of compliant micromechanisms”, Solid State Sensor and Actuator Workshop , pp.189–192, 1994.
  • [7] Sigmund, O. “On the Design of Compliant Mechanisms Using Topology Optimization”, Mech. Struct. Andamp; Mach, Vol. 25:4, pp.493-524, 199
  • [8] Sigmund, O. “Design of multiphysics actuators using topology optimization|part I: Onematerial structures”, Comput. Methods Appl. Engrg., 190, 2001.
  • [9] Sigmund, O. “Design of multiphysics actuators using topology optimization|part II: Twomaterial structures”, Comput. Methods Appl. Engrg., 190, 2001.
  • [10] Pedersen, C.B.W., Buhl, T. and Sigmund, O. “ Topology Synthesis of Large- Displacement Compliant Mechanisms” Int. J. Numer. Meth. Engng., Vol. 50, pp.2683- 2705, 2001.
  • [11] Parsons, R. and Canfield, S.L. “Developing genetic programming techniques for the design of compliant mechanisms”, Struct. Multidisc Optim. , Vol. 24, pp.78-86, 2002.
  • [12] Yulin, M. and Xiaoming, W. “A level set method for structural topology optimization and its applications”, Advances in Engineering Software, Vol. 35, pp. 415-441, 2004.
  • [13] Ansola, R., Vegueria, E., Canales, J. and Tarrago, J.A. “A simple evolutionary topology optimization procedure for compliant mechanism design”, Finite Element Analysis and Design, Vol. 44, pp.53-62, 2007.
  • [14] Lu, K. and Kota, S. “Topology and dimensional synthesis of compliant mechanisms using discrete optimization”, ASME, Vol. 128, 2006.
  • [15] Sharma, D., Deb, K. and Kishore, N.N. “Domain-specific initial population strategy for compliant mechanisms using customized genetic algorithm”, Struct. Multidisc Optim, Vol. 43, pp. 541-554, 2011.
  • [16] Luo, Z., Tong, L., Luo, J., Wei, P. and Wang, M.Y. “Design of piezoelectric actuators using a multiphase level set method of piecewise constants”, Journal of Computational Physics, Vol. 228, pp.2643–2659, 2009.
  • [17] Saxena, A. “Topology design of large displacement compliant mechanisms with multiple materials and multiple output ports”, Struct. Multidisc Optim., Vol. 30, pp.477-490, 2005.
  • [18] Saxena, A. “Synthesis of Compliant Mechanisms for Path Generation using Genetic Algoithm”, ASME J. Mech. Des., Vol. 127, pp.745-752, 2005.
  • [19] Luo, Z. and Tong, L.Y. “A level set method for shape and topology optimization of largedisplacement compliant mechanisms”, Int. J. Numer. Meth. Engng., Vol. 76, pp.862–892, 2008.
  • [20] Querin, O.M., Steven, G.P. and Xie, Y.M. "Evolutionary Structural optimization using an additive algorithm”. Finite Element in Analysis and Design, Vol. 34, p. 18, 2000.
  • [21] Rozvany, G.I.N. and Querin, O.M. “Theoretical foundations of Sequential Element Rejections and Admissions (SERA) methods and their computational implementations in topology optimization”, Proc. 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, 4-6 September 2002, Atlanta, Georgia, Paper 2002-5521, 2002.
  • [22] Sigmund, O. and Petersson, J. “Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima”, Struct. Optim., Vol.16, pp. 68–75, 1998.
  • [23] Shield, R.T. and Prager, W. “Optimal Structural Design for Given Deflection”, J. Appl. Math. Phys., Vol. 21, pp.513–523, 1970.
Como citar:

Alonso, C.; Ansola, R.; Querin, O.M.; Canales, J.; "DESIGN OF COMPLIANT MECHANISMS WITH A SEQUENTIAL ELEMENT REJECTION AND ADMISSION METHOD", p. 3645-3657 . In: In Proceedings of the 10th World Congress on Computational Mechanics [= Blucher Mechanical Engineering Proceedings, v. 1, n. 1]. São Paulo: Blucher, 2014.
ISSN 2358-0828, DOI 10.5151/meceng-wccm2012-19501

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações