fevereiro 2015 vol. 1 num. 2 - XX Congresso Brasileiro de Engenharia Química

Artigo - Open Access.

Idioma principal




The study of nanoparticles involves a new bias research in various areas of technology, whose production and use have been offering multiple benefits to society. However, the uncontrolled emission to the environment of nanoparticles is growing exponentially over the last decade. Thus, knowledge of the influence of nanoparticles and how they can modify the ecosystem is extremely important and an area currently limited. Therefore, it is of fundamental importance to increase the knowledge of the fate and transport of nanoparticles in soil, in particular this research will study the TiO2 nanoparticles (TiNPs). This study will carry out tests on columns with soil collected in the landfill Volta Redonda located in the state of Rio de Janeiro, Brazil. The concentrations are analyzed TiO2, as well as the distribution of the size of its aggregates by Nanoparticle Tracking Analysis (NTA).



DOI: 10.5151/chemeng-cobeq2014-0768-24092-152900

Referências bibliográficas
  • [1] Baun, A.; Hartmann, N. B.; Grieger, K.; Kusk, K. O. Ecotoxicity of engineered nanoparticles to aquatic invertebrates: a brief review and recommendations for future toxicity testing. Ecotoxicology 2008, 17, 387–395.
  • [2] Castro, J. A. A Multi-Dimensional Transient Mathematical Model of Blast Furnace Based on Multi-Fluid Model. Ph.D. Thesis - Institute for Advanced Materials Processing. Tohoku University. Japan. 2000.
  • [3] Chen, K.L., Elimelech, M., 2007. Influence of humic acid on the aggregation kinetics of fullerence (C60) nanoparticles in monovalent and divalent electrolyte solutions. Journal of Colloid and Interface Science 309, 126–134.
  • [4] Fang, J.; Shan, X.-Q.; Wen, B.; Lin, J.-m.; Owens, G. Stability of titania nanoparticles in soil suspensions and transport in saturated homogeneous soil columns. Environ. Pollut. 2009, 157 (4), 1101–1109.
  • [5] Fang, J.; Shan, X.-Q.; Wen, B.; Lin, J.-m.; Owens, G. Transport of copper as affected by titania nanoparticles in soil columns Environ. Pollut. 2011, 159, 1248–1256.
  • [6] Klaine, S.J., P.J.J., Alvarez, G.E., Batley, T.F., Fernandes, R.D., Handy, D.Y., Lyon, S., Mahendra, M.J., McLaughlin and J.R., Lead. 2008. Nanomaterials in the environment: Behavior, Fate, Bioavailability and Effects. Environ. Toxicol. Chem. 27:1825-1851.
  • [7] Ju, B., Fan, T., Experimental study and mathematical model of nanoparticle transport in porous media. / Environmental Pollution 157 (2009) 1101–1109.
  • [8] Área temática: Engenharia de Materiais e Nanotecnologia 7Nagaveni, K., Sivalingam, G., Hegde, M.S., Madras, G., 2004. Photocatalytic degradation of organic compounds over combustion-synthesized nano-TiO2. Environmental Science Andamp;Technology 38, 1600–1604.
  • [9] Nowack, B., Bucheli, T.D., 2008. Occurrence, behavior and effects of nanoparticles in the environment. Environmental Pollution 150, 5–22.
  • [10] Sen, T.K., Khilar, K.C., 2006. Review on subsurface colloids and colloid-associated contaminant transport in saturated porous media. Advances in Colloid and Interface Science 119, 71–96.
  • [11] Shah V., Belozerova I., 2008. Influence of metal nanoparticles on soil microbial community and germination of lettuce seeds. Water, Air, Andamp; Soil Pollution 197, 143-148.
  • [12] Shas, V., M., Glene, F., Kentin, A., Tyler, G., Kent, P., Jeff, S., Mark, E., Functionalized TiO2 Nanoparticles for Use for in Situ Anion Immobilization. Environ. Sci. Technol. 2005, 39, 7306-7310.
  • [13] Solovitch, N.; Melabille, J.; Rose, M., Borschneck, D., Wiesner, M., Yvesbottero, J.; Concurrent Aggregation and Deposition of TiO2 Nanoparticles in a Sandy Porous Media. Environ. Sci. Technol. 2010, 44, 4897–4902.
  • [14] Tassi, E., R. Pini, F. Gorini, Valadão, I. C. R. P., J. A. de Castro. Chemical and Physical Soil Properties Influencing TiO2 Nanoparticles Availability in Terrestrial Ecosystems. Journal of Environmental Research And Development. 2011. Accepted. Tadros, T.F., 2007. Colloid Stability: the Role of Surface Forces. Part I. Wiley-VCH Verlag Gmbh Andamp; Co. kGaA, Weinheim. Wang, Y.; Li, Y.; Fortner, J. D.; Hugnes, J. B.; Abriola, L. M.; Pennell, K. D. Transport and retention of nanoscale C60 aggregates in water-saturated porous media. Environ. Sci. Technol. 2008, 42, 3588–3594.
  • [15] Wiesner, M.R., Lowry,G.V., Alvarez, P.,Dionysiou,D.,Biswas, P., 2006. Assessing the risks of manufactured nanomaterials. Environmental Science Andamp;Technology 40, 4336–4345.
  • [16] Zhang, L., Webster, T.J., 2009. Nanotechnology and nanomaterials:promises for improved tissue regeneration. Nano Today 4: 66-80.
  • [17] Zhuang, J., Flury, M., Jin, Y., 2003. Colloid-facilitated Cs transport through watersaturated Hanford sediment and Ottawa sand. Environmental Science Andamp;Technology 37, 4905–4911.
Como citar:

OLIVEIRA, E. M.; CASTRO, J. A; VALADÃO, I. C. R. P.; ARAÚJO, A. S. F.; "CHARACTERISATION OF NANOPARTICLE SIZE OF TIO2 USING NANOPARTICLE TRACKING ANALYSIS (NTA)", p. 13604-13611 . In: Anais do XX Congresso Brasileiro de Engenharia Química - COBEQ 2014 [= Blucher Chemical Engineering Proceedings, v.1, n.2]. São Paulo: Blucher, 2015.
ISSN 2359-1757, DOI 10.5151/chemeng-cobeq2014-0768-24092-152900

últimos 30 dias | último ano | desde a publicação