Full Article - Open Access.

Idioma principal

Atomistic potential based cohesive modeling for surface separation

Xin, Kegui; He, Minghua;

Full Article:

An atomistic potential based (AP-based) cohesive modeling methodology is briefly presented. For this purpose, pair potentials and and multi-body potential such as EAM are considered and their softening characteristics are shown. Based on the AP-based hyperela- sicity with softening mechanism, the cohesive law in terms of cohesive traction and separation displacement is obtained. The presented method is feasible and a few remarks are given.

Full Article:

Palavras-chave: cohesive law, atomistic potential, softening, hyperelasticity, continuum.,


DOI: 10.5151/meceng-wccm2012-18140

Referências bibliográficas
  • [1] Curtin W A, Miller R E. “Atomistic/continuum coupling in computational materials sci- ence”. Modelling Simul. Mater. Sci. Eng., 2003, 11(3):R33-R68.
  • [2] Car R, Parrinello M. “Unified Approach for Molecular Dynamics and Density-Functional Theory”. Phys. Rev. Lett., 1985, 55(22):2471-2474.
  • [3] Kohlhoffa S, Gumbscha P, Fischmeistera H F. “Crack propagation in b.c.c. crystals s- tudied with a combined finite-element and atomistic model. Philosophical Magazine A, 1991, 64(4):851-878.
  • [4] Stakgold I. “The Cauchy relations in a molecular theory of elasticity. Quart. Appl. Math., 1950, 8:169-186.
  • [5] Born M, Huang K. “Dynamical Theory of Crystal Lattices. New York, London: Oxford University Press, 1954.
  • [6] Tadmor E B, Ortiz M, Phillips R. “Quasicontinuum analysis of defects in solids. Philo- sophical Magazine A, 1996, 73(6):1529-1563.
  • [7] Dupuy L M, Tadmor E B, Miller R E, et al. “Finite-Temperature Quasicontinuum: Molec- ular Dynamics without All the Atoms”. Phys. Rev. Lett., 2005, 95(6):060202.
  • [8] Rudd R E, Broughton J Q. “Coarse-grained molecular dynamics and the atomic limit of finite elements”. Phys. Rev. B, 1998, 58(10):R5893-R5896.
  • [9] Gao H, Klein P. “Numerical simulation of crack growth in an isotropic solid with ran- domized internal cohesive bonds”. J. Mech. Phys. Solids, 1998, 46(2):187-218.
  • [10] Wagner G J, LiuWK. “Coupling of atomistic and continuum simulations using a bridging scale decomposition”. J. Comput. Phys., 2003, 190(1):249-274.
  • [11] Xiang M Z, Cui J Z, Tian X. “A nonlocal continuum model based on atomistic model”. Sci. Sin. - Phys, Mech and Astron, 2011, 41(3): 292-301.
  • [12] He M H, Xin K G. “Separation work analysis of cohesive law and a consistently coupled cohesive law”. Appl. Math. Mech., 2011, 32(11): 1437-1446.
  • [13] Weinan E, Ming P. “CauchyCBorn Rule and the Stability of Crystalline Solids: Static Problems”. Arch. Ration. Mech. An., 2007, 183(2):241-297.
  • [14] Friesecke G, Theil F. “Validity and Failure of the Cauchy-Born Hypothesis in a Two- Dimensional Mass-Spring Lattice”. J. Nonlinear Sci., 2008, 12(5):445-478.
  • [15] Belytschko T, LiuWK, Moran B. “Nonlinear finite elements for continua and structures”. Chichester, England: John Wiley and Sons, Ltd, 2000.
  • [16] He M H, Li S. “An embedded atom hyperelastic constitutive model and multiscale cohe- sive finite element method”. Comput. Mech., 2012, 49(3):337-355.
  • [17] Volokh K. “Hyperelasticity with softening for modeling materials failure”. J. Mech. Phys. Solids, 2007, 55(10):2237-2264.
  • [18] Holian B L, Ravelo R. “Fracture simulations using large-scale molecular dynamics”. Phys. Rev. B, 1995, 51(17):11275-11288.
Como citar:

Xin, Kegui; He, Minghua; "Atomistic potential based cohesive modeling for surface separation", p. 846-853 . In: In Proceedings of the 10th World Congress on Computational Mechanics [= Blucher Mechanical Engineering Proceedings, v. 1, n. 1]. São Paulo: Blucher, 2014.
ISSN 2358-0828, DOI 10.5151/meceng-wccm2012-18140

últimos 30 dias | último ano | desde a publicação