Full Article - Open Access.

Idioma principal


Silva, L.P. da; Deü, J.-F.; Larbi, W.; Trindade, M.A.;

Full Article:

The present work concerns the numerical modeling of noise and vibration reduc-tion of thin radiating structures in the low frequency range by using shunted piezoelectric elements. The aim is to propose an efficient approach able to predict the structures most ra-diating vibration modes and to attenuate these modes by using piezoelectric patches bonded on the structure and connected to resistive or resonant shunt. The first step is to estimate the sound power radiated by the structure and determine the vibration modes to be controlled. In a second step, an original finite element formulation, adapted to any elastic structures with surface-mounted piezoelectric patches, is proposed to solve the electromechanical problem. Finally, numerical examples are presented in order to validate and analyze our approach.

Full Article:

Palavras-chave: Vibration and sound reduction, Piezoelectric shunt, Finite element method.,


DOI: 10.5151/meceng-wccm2012-18811

Referências bibliográficas
  • [1] ANSI/IEEE Standard 176-1987. “IEEE Standard on iezoelectricity”. 1988.
  • [2] Benjeddou A., “Advances in piezoelectric finite element modeling of adaptive structural elements: a survey”. Computers and Structures. 76(1–3), 347–363, 2000.
  • [3] Berkhoff A. P., “Sensor scheme design for active structural acoustic control”. Journal of the Acoustical Society of America. 108(3), 1037–1045, 2000.
  • [4] Caruso G., “A critical analysis of electric shunt circuits employed in piezoelectric passive vibration damping”. Smart Materials and Structures. 10(5), 1059–1068, 2001.
  • [5] Collet M., Cunefare K.A., “Modal Synthesis and Dynamical Condensation Methods for Accurate Piezoelectric Systems Impedance Computation”. Journal of Intelligent Material Systems and Structures. 19(11), 1251-1269, 2008.
  • [6] De Man P., “Controle actif du rayonnement acoustique des plaques : une approche à faible autorité”. PhD thesis, Active Structures Laboratory of Université libre de Bruxelles.2004.
  • [7] dell''Isola F., Maurini C., Porfiri M., “Passive damping of beam vibrations through distrib-uted electric networks and piezoelectric transducers: prototype design and experimental validation”. Smart Materials and Structures. 13 (2), 299–308, 2004.
  • [8] Deü J.-F., Larbi W., Ohayon R., “Piezoelectric structural acoustic problems: Symmetric variational formulations and finite element results”. Computer Methods in Applied Me-chanics and Engineering. 197(19-20), 1715-1724, 200
  • [9] Elliott S. J., Johnson M. E., “Radiation modes and the active control of sound power”. Journal of Acoustical Society of America. 94(4), 2194-2204, 1993.
  • [10] Filippi P. J. T., “Acoustique générale, SFA”. Les éditions de physique. 1994.
  • [11] Fernandes A., Pouget J., “Two-dimensional modelling of laminated piezoelectric com-posites: analysis and numerical results”. Journal of Thin-Walled Structures. 39, 3-22, 2001.
  • [12] Hagood N.W., Flotow A.V., “Damping of structural vibrations with piezoelectric mate-rials and passive electrical networks”. Journal of Sound and Vibration. 146(2), 243–268, 1991.
  • [13] Hollkamp J.J., “Multimodal passive vibration suppression with piezoelectric materials and resonant shunts”. Journal of Intelligent Material Systems and Structures, 5 (1), 49–57, 1994.
  • [14] “MSC-NASTRAN 2010 Documentation”. MSC Software Corporation. 2010.
  • [15] Larbi W., Deü J.-F., Ciminello M., Ohayon R., “Structural-acoustic vibration reduction using switched shunt piezoelectric patches: A finite element analysis”. Journal of Vibra-tion and Acoustics. 132(5), 051006, 2010.
  • [16] Rosi G., Pouget J., dell’Isola F., “Control of sound radiation and transmission by a pie-zoelectric plate with an optimized resistive electrode”. European Journal of Mechanics/A Solids. 29, 859-870, 2010.
  • [17] Sénéchal A., Thomas O., Deü J.-F., “Optimization of shunted piezoelectric patches for vibration reduction of complex structures—application to a turbojet fan blade”. Proceed-ings of the ASME 2010 International Design Engineering Technical Conferences Andamp; Com-puters and Information in Engineering Conference, IDETC/CIE 2010, Montreal, Canada. 2010.
  • [18] Thomas O., Deü J.-F., Ducarne J., “Vibrations of an elastic structure with shunted pie-zoelectric patches: efficient finite elements formulation and electromechanical couplings coefficients”. International Journal for Numerical Methods in Engineering. 80(2), 235-268, 2009.
  • [19] Thomas O., Ducarne J., Deü J.-F., “Performance of piezoelectric shunts for vibration reduction”. Smart Materials and Structures. 21(1), 015008, 2012.
  • [20] Thomas O., Ducarne J., Deü J.-F., “Placement and dimension optimization of shunted piezoelectric patches for vibration reduction”. Journal of Sound and Vibration. 331 (14), 3286–3303, 2012.
  • [21] Trindade M.A., Benjeddou A., Ohayon R., “Finite element modeling of hybrid active-passive vibration damping of multilayer piezoelectric sandwich beams. Part 1: Formula-tion”. International Journal for Numerical Methods in Engineering. 51(7), 835-854, 2001.
  • [22] Trindade M.A., Benjeddou A., “Effective electromechanical coupling coefficients of piezoelectric adaptive structures: Critical evaluation and optimization”. Mechanics of Ad-vanced Materials and Structures. 16, 210-223, 2009.
  • [23] Trindade M.A., Maio C.E.B., “Multimodal passive vibration control of sandwich beams with shunted shear piezoelectric materials”. Smart Materials and Structures. 17, 055015, 2008.
  • [24] Viana F.A.C., Steffen Jr V., “Multimodal vibration damping through piezoelectric patches and optimal resonant shunt circuits”. Journal of the Brazilian Society of Mechani-cal Sciences. 28(3), 293-310, 2006.
  • [25] Wallace C.E., “Radiation Resistance of a Rectangular Panel, Journal of the Acoustical Society of America”. 51(3), 946–952, 1972.
Como citar:

Silva, L.P. da; Deü, J.-F.; Larbi, W.; Trindade, M.A.; "AN EFFICIENT FINITE ELEMENT APPROACH FOR REDUCTION OF STRUC-TURAL VIBRATION AND ACOUSTIC RADIATION BY PASSIVE SHUNTED PIE-ZOELECTRIC SYSTEMS", p. 2302-2321 . In: In Proceedings of the 10th World Congress on Computational Mechanics [= Blucher Mechanical Engineering Proceedings, v. 1, n. 1]. São Paulo: Blucher, 2014.
ISSN 2358-0828, DOI 10.5151/meceng-wccm2012-18811

últimos 30 dias | último ano | desde a publicação