Full Article - Open Access.

Idioma principal

A NEW STRESS BASED TOPOLOGY OPTIMIZATION METHOD TO PREVENT STATIC AND DYNAMIC FAILURES OF DUCTILE OR BRITTLE MATERIAL

Jeong, S.H.; Choi, D. H.; Yoon, G. H.;

Full Article:

A new stress-based topology optimization method (STOM) is developed in order to consider various static failure criteria such as the maximum shear stress (MSS) theory, the brittle Coulomb-Mohr (DCM) theory, and the modified Mohr (MM) theory. Because of non-differentiability of failure criteria of these static failure theories, it seems that a successfull topology optimization (TO) method considering the static failure has not been proposed yet. In order to solde TO problem which minimize the usage of material subject to the non-differentiable static failure criteri, we formulate the differentiable failure criteria by using maximum and minimum operators. For a stable TO process, the p-norm stress measure approximating the maximum value of the stress norms and the adjustment parameter in the segregated design domain are implemented. Furthermore, a preliminary research considering the dynamic fatigue failure in the framework of the modified Goodman theory is presented. The validity and usefulness of the present STOM are demonstrated by solving typical TO benchmark problems.

Full Article:

Palavras-chave: Stress-based topology optimization, static failure theories, ductile material, brittle material,

Palavras-chave:

DOI: 10.5151/meceng-wccm2012-18416

Referências bibliográficas
  • [1] Suzuki K., Kikuchi N., “A homogenization method for shape and topology optimization”. Comput. Meth. Appl. Mech. Eng., 93, 291-318, 199
  • [2] Nishiwaki S., Frecker M. I., Min S. J., Kikuchi N., “Topology optimization of compliant mechanisms using the homogenization method”. Int. J. Numer. Methods Eng., 42, 535- 559, 1998.
  • [3] Bendsoe M. P., Sigmund O., “Material interpolation schemes in topology optimization”. Arch. Appl. Mech., 69, 635-654, 1999.
  • [4] Bendsoe M. P., Sigmund O., “Topology optimization: theory, methods, and applications”. Berlin; New York: Springer, 2003.
  • [5] Wang M. Y., Wang X. M., Guo D. M., “A level set method for structural topology optimization”. Comput. Meth. Appl. Mech. Eng., 192, 227-246, 2003.
  • [6] Mei Y. L., Wang X. M., “A level set method for structural topology optimization and its applications”. Adv. Eng. Softw., 35, 415-441, 2004.
  • [7] Yoon G. H., Kim Y. Y., “Element connectivity parameterization for topology optimization of geometrically nonlinear structures”. Int. J. Solids Struct., 42, 1983-2009, 2005.
  • [8] Yoon G. H., Kim Y. Y., “Topology optimization of material-nonlinear continuum structures by the element connectivity parameterization”. Int. J. Numer. Methods Eng., 69, 2196-2218, 2007.
  • [9] Le C., Norato J., Bruns T. Ha C., Tortorelli D., “Stress-based topology optimization for continua”. Struct. Multidiscip, Optim., 41, 605-620, 2010.
  • [10] Jeong S. H., Choi D. H., Yoon G. H., “Separable stress interpolation scheme for stressbased topology optimization with multiple materials”. In preparation.
  • [11] Jeong S. H., Park S. H., Choi D. H., Yoon G. H., “Topology optimization considering static failure theories for ductile and brittle materials”. In review.
  • [12] Budynas R. G., Nisbett J. K., “Shigley’s mechanical engineering design”. New York: Mcgraw-Hill, 2011.
  • [13] Paris J., Navarrina F., Colominas I., Casteleiro M., “Topology optimization of continuum structures with local and global stress constraints”. Struct. Multidiscip, Optim., 39, 419-437, 2009.
  • [14] Paris J., Navarrina F., Colominas I., Casteleiro M., “Block aggregation of stress constraints in topology optimization of structures”. Adv. Eng. Softw., 41, 433-441, 2010. [15] Svanberg K., “The method of moving asymptotes – a new method for structural optimization”. Int. J. Numer. Methods Eng., 24, 359-373, 1987.
Como citar:

Jeong, S.H.; Choi, D. H.; Yoon, G. H.; "A NEW STRESS BASED TOPOLOGY OPTIMIZATION METHOD TO PREVENT STATIC AND DYNAMIC FAILURES OF DUCTILE OR BRITTLE MATERIAL", p. 1424-1431 . In: In Proceedings of the 10th World Congress on Computational Mechanics [= Blucher Mechanical Engineering Proceedings, v. 1, n. 1]. São Paulo: Blucher, 2014.
ISSN 2358-0828, DOI 10.5151/meceng-wccm2012-18416

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações