Full Article - Open Access.

Idioma principal

A FULLY ADAPTIVE, CONSERVATIVE FRONT TRACKING METHOD FOR THE SIMULATION OF INCOMPRESSIBLE MULTIPHASE FLOWS

Pivello, M. R.; Lima, R. S. de; Vale, M. M. V.; Roma, A. M.; Silveira-Neto, A.;

Full Article:

This paper presents a fully adaptive formulation of the Front Tracking method for the simulation of incompressible, multiphase, bubbly flows, based on the Tryggvason formulation. The Navier-Stokes equations are discretized using a finite difference scheme, and domain discretization is carried out with Berger Andamp; Collela’s structured adaptive mesh refinement (SAMR) algorithm. Time discretization is based on SBDF scheme, with adaptive time stepping. The lagrangian interface is represented using the GTS library, which provides a volume- and shape- preserving remeshing algorithm, therefore minimizing the volume change due to non-conservative interpolation of the eulerian velocity field. Nevertheless, a simple volume recovery algorithm is also provided, along with a subgrid undulation removal algorithm based on the TSUR-3D algorithm[6]. Rising bubble flows were simulated under several regimes, showing small errors when comparing to experimental results.

Full Article:

Palavras-chave: two-phase flows, front tracking method, rising bubbles, adaptive mesh refinement, conservative).,

Palavras-chave:

DOI: 10.5151/meceng-wccm2012-18655

Referências bibliográficas
  • [1] Ascher, U.M. and Ruuth, S.J. and Wetton, B.T.R. Implicit-explicit methods for timedependent partial differential equations. SIAM Journal on Numerical Analysis, 32(3):pp. 797–823.
  • [2] M. J. Berger and R. J. Le Veque. Adaptive mesh refinement using wave propagation algorithms for hyperbolic systems. SIAM Journal on Numerical Analysis, 35(6):2298– 2316, 1998.
  • [3] Berger, M. J. and Colella, P. Local adaptive mesh refinement for shock hydrodynamics. J. Comput. Phys., 82:64–84, 1989.
  • [4] Bhaga, D. Bubbles in viscous liquids: shapes, wakes and velocities. PhD thesis, Department of Chemical Engineering, McGill University, Montreal, Canada, September 1976.
  • [5] Ceniceros, H.D. and Roma, A.M. A multi-phase flow method with a fast, geometrybased fluid indicator. Journal of Computational Physics, 205(2):391 – 400, 200
  • [6] de Sousa, F.S. and Mangiavacchi, N. and Nonato, L.G. and Castelo, A. and Tom´e, M.F. and Ferreira, V.G. and Cuminato, J.A. and McKee, S. A front-tracking/front-capturing method for the simulation of 3d multi-fluid flows with free surfaces. Journal of Computational Physics, 198(2):469–499, 2004.
  • [7] Geuzaine, C and Remacle, J. F. Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. International Journal for Numerical Methods in Engineering, 79(11):1309–1331, 2009.
  • [8] J. Glim, E. Isaacson, D. Marchesin, and O. McBryan. Front tracking for hyperbolic systems. Adv. Appl. Math., 2:91–119, 1981.
  • [9] Jameson, M. J. Berger A. Automatic adaptive grid refinement for the euler equations. American Institute of Aeronautics and Astronautics Journal, 23(4):561–568, 1985.
  • [10] S. Jin, R. R. Lewis, and D. West. A comparison of algorithms for vertex normal computation. The Visual Computer, 21(1-2):71–82, 2005.
  • [11] Lindstrom, P. and Turk, G. Fast and memory efficient polygonal simplification. In Proceedings of IEEE Visualization ’98, pages 279–286, October 1998.
  • [12] Mauch, S. Efficient algorithms for solving static Hamilton-Jacobi equations. PhD thesis, Caltech, Pasadena CA, 2003.
  • [13] Peskin, C. S. Numerical analysis of blood flow in the heart. Journal of Computational Physics, 25(1):220–252, 1977.
  • [14] Peskin, C. S. The immersed boundary method. Acta Numerica, 11:479–517, 2002.
  • [15] Popinet, S. GTS Library Reference Manual, 2000.
  • [16] Roma, A. M. and Peskin, C. S. and Berger, M. J. An Adaptive Version of the Immersed Boundary Method. Journal of Computational Physics, 153(2):509 – 534, 1999.
  • [17] Singh, R. and Shyy, W. Three-dimensional adaptive cartesian grid method with conservative interface restructuring and reconstruction. Journal of Computational Physics, 224(224):150–167, 2007.
  • [18] Stene, J. F. Numerical Simulation of Interfacial and Multiphase Flows using the Front Tracking Method. PhD thesis, National University of Singapore, 2010.
  • [19] Tryggvason, G. and Bunner, B. and Esmaeeli, A. and Juric, D. and Al-Rawahi, N. and Tauber, W. and Han, J. and Nas, S. and Jan, Y. J. A front-tracking method for the computations of multiphase flow. J. Comput. Phys., 169:708–759, 2001.
  • [20] Unverdi, S. A. and Tryggvason, G. A front-tracking method for viscous, incompressible, multi-fluid flows. J. Comput. Phys., 100:25–37, 1992.
  • [21] Yokoi, K. A numerical method for free-surface flows and its application to droplet impact on a thin liquid layer. J. Sci. Comput., 35:372–396, 2008.
Como citar:

Pivello, M. R.; Lima, R. S. de; Vale, M. M. V.; Roma, A. M.; Silveira-Neto, A.; "A FULLY ADAPTIVE, CONSERVATIVE FRONT TRACKING METHOD FOR THE SIMULATION OF INCOMPRESSIBLE MULTIPHASE FLOWS", p. 2034-2047 . In: In Proceedings of the 10th World Congress on Computational Mechanics [= Blucher Mechanical Engineering Proceedings, v. 1, n. 1]. São Paulo: Blucher, 2014.
ISSN 2358-0828, DOI 10.5151/meceng-wccm2012-18655

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações