Full Article - Open Access.

Idioma principal


Brandão, M.; Dorício, J. L.; Lobato, F. S.; Saramago, S. F. P.;

Full Article:

In last decades, evolutionary approaches has been used extensively and demonstrated to be robust and efficient global optimization methods for engineering system design. Among these techniques, the Shuffled Complex Evolution (SCE) and the Differential Evolution algorithm (DE) are two good examples found in literature. DE differs from other evolutionary algorithms in the mutation and recombination phases. Unlike some meta-heuristic techniques such as genetic algorithms and evolutionary strategies, where perturbation occurs in accordance with a random quantity, DE uses weighted differences between solution vectors to perturb the population. In SCE a population of solutions is generated and partitioned into several sub-populations (called complexes). Each complex evolves independently using the DE algorithm for a set number of evolutions. The complexes are then shuffled thereby enabling exchange of information among them. If convergence is not reached, the population is again divided and a new set of evolutions for each new-found complex is carried out. In this work, is proposed a comparative study and a hybrid approach involving the SCE and the DE algorithms. The methodology proposed is applied to design of three-revolute (3R) manipulators using an optimization problem that takes into account the characteristics of the workspace. For this purpose, a multi-objective optimization problem is formulated to obtaining the optimal geometric parameters of robot. The maximum workspace volume, the maximum system stiffness and the optimum dexterity are considered as the multi-objective functions. The results show that the procedure represents a promising alternative for the type of problem presented above.

Full Article:

Palavras-chave: Shuffled Complex Evolution, Differential Evolution, robotic manipulator design,


DOI: 10.5151/meceng-wccm2012-18598

Referências bibliográficas
  • [1] Abdel-Malek K., Yeh H. -J., Othman S., “Understanding Voids in the Workspace of Serial Robot Manipulators”, Proceedings Pf 23rd ASME, Design Engineering Technical Conference, Baltimore, Maryland, 2000.
  • [2] Beer F. P., Johnston Jr. E. R., “Vector Mechanics for Engineers: Statics and Dynamics”, Mac Graw Hill, third edition, New York, USA, 1977.
  • [3] Bergamaschi P. R., Nogueira A. C., Saramago S. F. P, “Design and Optimization of 3R Manipulators using the Workspace Features”, Applied Mathematics and Computation, 172, 439-463, 2006.
  • [4] Bergamaschi P. R., Saramago S. F. P, Coelho, L. S., “Comparative Study of SQP and Metaheuristics for Robotic Manipulator Design”, Applied Mathematics and Computation, 58, 1396-1412, 2008.
  • [5] Biswas A., Das S., Abraham A., Dasgupta S., “Design of Fractional order PID Controllers with an Improved Differential Evolution”, Engineering Applications of Artificial Intelligence, Elsevier Science, 22, 2, 343-350, 2009.
  • [6] Blackmore L., Williams B., “Optimal Manipulator Path Planning with Obstacles using Disjunctive Programming”, Proc. of the American Control Conference, 3200- 3202, 200
  • [7] Ceccarelli M., “A Formulation for theWorkspace Boundary of General N-Revolute Manipulators”, IFToMM Journal of Mechanism and Machine Theory, 31, 5, 637- 646, 1996.
  • [8] Ceccarelli M., Lanni C., “A Multi-objective Optimum Design of General 3R Manipulators for Prescribed Workspace Limits, Mechanism and Machine Theory, 39, 119-132, 2004.
  • [9] Das S., Suganthan P. N., “Differential Evolution: A Survey of the State-of-the-Art”, IEEE Trans. on Evolutionary Computation, DOI: 10.1109/TEVC.2010.2059031, 2011.
  • [10] Ding H., Zhou M., Stursberg O., “Optimal Path Planning in the Workspace for Articulated Robots using Mixed Integer Programming”, IEEE/RSJ Int. Conf. on Intell. Robots and Syst., 5770-5775, 2009.
  • [11] Duan Q., “A Global Optimization Strategy for Efficient and Effective Calibration of Hydrologic Models”, Dissertation, University of Arizona, USA.
  • [12] Franchini M., Galeati G., Berra S., “Global Optimisation Techniques for the Calibration of Conceptual Rainfall-Runoff Models”, Journal of Hydrologic Science, 43, 3, 443-458, 1998.
  • [13] Gupta K. C., Roth B., “Design Considerations for Manipulator Workspace”, Journal of Mechanical Design, 104, 704-711, 1982.
  • [14] Kuczera G., “Efficient Subspace Probabilistic Parameter Optimization for Catchment Models”, Water Resources Research, 33, 177-185, 1997.
  • [15] Lanni C., Saramago S.F.P., Ceccarelli M., “Optimal Design of 3R Manipulators using Classical Techniques and Simulated annealing”, Revista Brasileira de Cincias Mecnicas, Brazil, 24, 4, 293-301, 2002.
  • [16] Liong S. Y., Atiquzzaman M., “Optimal Design ow Water Distribution Network using Shuffled Complex Evolution”, Journal of The Institution of Engineers, Singapore, 44, 1, 2004.
  • [17] Lobato F. S., Oliveira-Lopes L. C., Murata V. V., Steffen Jr. V., “Solution of Multiobjective Optimal Control Problems with Index Fluctuation using Differential Evolution”. 6th Brazilian Conference on Dynamics, Control and Applications - DINCON, 2007.
  • [18] Lobato F. S., Steffen Jr. V., “Engineering System Design with Multi-objective Differential Evolution”, 19th International Congress of Mechanical Engineering - COBEM 2007.
  • [19] Lobato F. S., Arruda E. B., Barrozo M. A. S., Steffen Jr. V., “Estimation of Drying Parameters in Rotary Dryers using Differential Evolution”. Journal of Physics Conference Series, 135, 1-8, 2008.
  • [20] Lobato F. S., Steffen Jr. V., Silva Neto A. J.. “Solution of Inverse Radiative Transfer Problems in Two-layer Participating Media with Differential Evolution”, EngOpt 2008 - International Conference on Engineering Optimization, Rio de Janeiro - Brasil, 2008.
  • [21] Lobato F. S., Figueira C. E., Soares R. R., Steffen Jr. V., “A Comparative Study of Gibbs Free Energy Minimization in a Real System Using Heuristic Methods”. Computer-Aided Chemical Engineering, 27, 1059-1064, 2009.
  • [22] Lobato F. S., Steffen Jr. V., Silva Neto A. J., “Estimation of Space-dependent Single Scattering Albedo in Radiative Transfer Problems”, Inverse Problems, Design and Optimization Symposium, João Pessoa, Brazil, 25-27, 2010.
  • [23] Lobato F. S., Steffen Jr. V., Silva Neto A. J., “A Comparative Study of the Application of Differential Evolution and Simulated Annealing in Inverse Radiative Transfer Problems”. Journal of the Brazilian Society of Mechanical Sciences and Engineering, XXXII, 518-526, 2010.
  • [24] Lobato F. S., Steffen Jr. V., Silva Neto A. J., “Self-Adaptive Differential Evolution Based on the Concept of Population Diversity Applied to Simultaneous Estimation of Anisotropic Scattering Phase Function, Albedo and Optical Thickness”. Computer Modeling in Engineering Andamp; Sciences, 1, 1-17, 2010.
  • [25] Mariani V. C., Lima A. G. B., Coelho L. S., “Apparent Thermal Diffusivity Estimation of the Banana During Drying using Inverse Method”, Journal of Food Engineering, 85, 569-579, 2008.
  • [26] Muttil N., Liong S. Y., “A Superior Exploration-Exploitation Balance in Shuffled Complex Evolution”, Journal of Hydraulic Engineering, ASCE, 130, 12, 1202- 1205, 2004.
  • [27] Nelder J. A., Mead R., “A Simplex Method for Function Minimization”, Computer Journal, 7, 308-313, 1965.
  • [28] Oliveira G. T. S., Nogueira, A. C., Saramago, S. F. P., ”Use of the Grobner Basis in the Study of Manipulators Topology”, Proceedings of the 20th International Congress of Mechanical Engineering, Gramado, 1-10, 2009.
  • [29] Oliveira L. S., Saramago, S. F. P.”Multiobjective Optimization Techniques Applied to Engineering Problems”, Journal of the Brazilian Society of Mechanical Sciences and Engineering, XXXII, 94-104, 2010.
  • [30] Saramago, S. F. P., Ottaviano E., Ceccarelli M., “A Characterization of the Workspace Boundary of Three-Revolute Manipulators”, Design Engineering Technical Conferences (DETC-02), Proceedings of DETC-02, ASME 2002, Montreal, 1, 34342-34352, 2002.
  • [31] Storn R. M., Price K. V., Lampinen J. A., “Differential Evolution - A Practical Approach to Global Optimization”. Springer, Natural Computing Series, 2005.
  • [32] Storn R., Price K. V., “Differential Evolution: A Simple and Efficient Adaptive Scheme for Global Optimization Over Continuous Spaces”. International Computer Science Institute, 12, 1-16, 1995.
  • [33] Storn R., “Differential Evolution Design of an IIR-filter with Requirements for Magnitude and Group Delay”, International Computer Science Institute, TR-95- 026, 1995.
  • [34] van Griensven A., Bauwens W., “Multiobjective Autocalibration for Semidistributed Water Quality Models”, Water Resources Research, 39, 1348-1357, 2003, doi:10.1029/2003WR002284.
  • [35] Vargas J. R. G., Villarreal L., Reynoso J. M., Mier-Maza R., “Diseo de un Manipulador Industrial para Aplicaciones de Limpieza en Subestaciones Elctricas”. Centro Metropolitano de Investigacin en Mecatrnica, ITESM Quertaro, 1992.
Como citar:

Brandão, M.; Dorício, J. L.; Lobato, F. S.; Saramago, S. F. P.; "A COMPARATIVE STUDY USING SHUFFLED COMPLEX EVOLUTION AND DIFFERENTIAL EVOLUTION APPLIED TO ROBOTIC MANIPULATOR DESIGN", p. 1953-1968 . In: In Proceedings of the 10th World Congress on Computational Mechanics [= Blucher Mechanical Engineering Proceedings, v. 1, n. 1]. São Paulo: Blucher, 2014.
ISSN 2358-0828, DOI 10.5151/meceng-wccm2012-18598

últimos 30 dias | último ano | desde a publicação