fevereiro 2015 vol. 1 num. 2 - XX Congresso Brasileiro de Engenharia Química

Artigo - Open Access.

Idioma principal


LUNA, C. M. R.; ÁVILA, I.; CARROCCI, L. R.; ARCE, G. L. A. F.;


In this paper, a model based on the Eulerian-Eulerian approach considering the kinetic theory of granular flow (KTGF) is used in order to provide a comprehensive comparison between Gidaspow (1994) drag model and recent models found in literature, such as Hill et al. (2001), Yang et al. (2003), Zhang-Reese (2003), Van der Hoff et al. (2005) and Beetstra et al. (2007). The effects of these drag models on hydrodynamics behavior of gas-solid flow in fluidized bed will be investigated by using the MFIX code. The results are used to assess their capacity in predicting parameters such as pressure drop, bed expansion and voidage profiles, and then finally validated with the experimental results of Taghipour et al. (2005), which is available in literature. Results show that Hill et al. (2001), Zhang-Reese (2003) and Beetstra et al. (2007) drag models can be used to predict hydrodynamic parameters of gas-solid flow in a fluidized-bed much more accurately than Gidaspow (1994) model.



DOI: 10.5151/chemeng-cobeq2014-0017-27527-160466

Referências bibliográficas
  • [1] Ahuja, G. N., Andamp; Patwardhan, A. W. (2008). CFD and experimental studies of solids hold-up distribution and circulation patterns in gas – solid fluidized beds, 143, 147–160.
  • [2] doi:10.1016/j.cej.2008.03.011 Armstrong, L. M., Gu, S., Andamp; Luo, K. H. (2010). Study of wall-to-bed heat transfer in a bubbling fluidised bed using the kinetic theory of granular flow. International Journal of Heat and Mass Transfer, 53(21-22), 4949–4959. doi:10.1016/j.ijheatmasstransfer.2010.05.047 Beetstra, R., Hoef, M. Van der, Andamp; Kuipers, J. (2007). Drag force of intermediate Reynolds number flow past mono and bidisperse arrays of spheres. AIChE Journal, 53(2), 489–501.
  • [3] doi:10.1002/aic De Souza Braun, M. P., Mineto, A. T., Navarro, H. A., Cabezas-Gómez, L., Andamp; da Silva, R. C. (2010). The effect of numerical diffusion and the influence of computational grid over gas–solid two-phase flow in a bubbling fluidized bed. Mathematical and Computer Modelling, 52(9-10), 1390–1402. doi:10.1016/j.mcm.2010.05.017 Deen, N. G., Van Sint Annaland, M., Van der Hoef, M. a., Andamp; Kuipers, J. a. M. (2007). Review of discrete particle modeling of fluidized beds. Chemical Engineering Science, 62(1-2), 28–44.
  • [4] doi:10.1016/j.ces.2006.08.014 Du, W., Bao, X., Xu, J., Andamp; Wei, W. (2006). Computational fluid dynamics (CFD) modeling of spouted bed: Assessment of drag coefficient correlations. Chemical Engineering Science, 61(5), 1401–1420. doi:10.1016/j.ces.2005.08.013 Esmaili, E., Andamp; Mahinpey, N. (2011). Adjustment of drag coefficient correlations in three dimensional CFD simulation of gas–solid bubbling fluidized bed. Advances in Engineering Software, 42(6), 375–386. doi:10.1016/j.advengsoft.2011.03.005 Gidaspow, D. (1994). Multiphase Flow and Fluidization: Continuum and Kinetic Theory Description. San Diego: Academic Press. Gupta, C. K., Andamp; Sathiyamoorthy, D. (1999). Fluid Bed Technology in Materials Processing. Boca Raton: CRC Press. Halvorsen, B. (2005). An Experimental and Computational Study of Flow Behaviour in Bubbling Fluidized Beds. The Norwegian University of Science and Technology (NTNU). Hill, R. J., Koch, D. L., Andamp; Ladd, A. J. C. (2001). Moderate-Reynolds-number flows in ordered and random arrays of spheres. Journal of Fluid Mechanics, 448, 243–278.
  • [5] doi:10.1017/S0022112001005936 Área temática: Fenômenos de Transporte e Sistemas Particulados 15Hoef, M. Van der, Beetstra, R., Andamp; Kuipers, J. (2005). Lattice-Boltzmann simulations of low-Reynolds-number flow past mono- and bidisperse arrays of spheres: results for the permeability and drag force. J. Fluid Mech, 528, 233–254. doi:10.1017/S0022112004003295 Hosseini, S. H., Ahmadi, G., Saeedi Razavi, B., Andamp; Zhong, W. (2010). Computational Fluid Dynamic Simulation of Hydrodynamic Behavior in a Two-Dimensional Conical Spouted Bed. Energy Andamp; Fuels, 24(11), 6086–6098. doi:10.1021/ef100612r Hosseini, S. H., Zhong, W., Esfahany, M. N., Pourjafar, L., Andamp; Azizi, S. (2010). CFD Simulation of the Bubbling and Slugging Gas-Solid Fluidized Beds. Journal of Fluids Engineering, 132(4), 041301. doi:10.1115/1.4001140 Kunii, D., Andamp; Levenspiel, O. (1991). Fluidization Engineering (second ed.). London: Butterworths. Li, P., Lan, X., Xu, C., Wang, G., Lu, C., Andamp; Gao, J. (2009). Drag models for simulating gas–solid flow in the turbulent fluidization of FCC particles. Particuology, 7(4), 269–277.
  • [6] doi:10.1016/j.partic.2009.03.010 Lim, K., Zhu, J., Andamp; Grace, J. (1995). Hydrodynamics of gas-solid fluidization. International Journal of Multiphase Flow. Retrieved from http://www.sciencedirect.com/science/article/pii/030193229500038Y Lindborg, Hå., Lysberg, M., Andamp; Jakobsen, H. a. (2007). Practical validation of the two-fluid model applied to dense gas–solid flows in fluidized beds. Chemical Engineering Science, 62(21), 5854–5869. doi:10.1016/j.ces.2007.0011 Loha, C., Chattopadhyay, H., Andamp; Chatterjee, P. (2012). Assessment of drag models in simulating bubbling fluidized bed hydrodynamics. Chemical Engineering Science, 75, 400–407.
  • [7] doi:10.1016/j.ces.2012.03.044 Min, J., Drake, J. B., Heindel, T. J., Andamp; Fox, R. O. (2010). Experimental Validation of CFD Simulations of a Lab-Scale Fluidized-Bed Reactor with and Without Side-Gas Injection, 56(6). doi:10.1002/aic Oka, S., Andamp; Anthony, E. J. (2004). Fluidized Bed Combustion (p. 616). Ranade, V. (2001). Computational Flow Modeling for Chemical Reactor Engineering: Process Systems Engineering, Volume 5. Chemical Petrochemical Process (pp. 1–480). Reuge, N., Cadoret, L., Coufort-Saudejaud, C., Pannala, S., Syamlal, M., Andamp; Caussat, B. (2008). Multifluid Eulerian modeling of dense gas–solids fluidized bed hydrodynamics: Influence of the dissipation parameters. Chemical Engineering Science, 63(22), 5540–5551.
  • [8] doi:10.1016/j.ces.20007.028 Área temática: Fenômenos de Transporte e Sistemas Particulados 16Sobieski, W. (2009). Momentum exchange in solid–fluid system modeling with the Eulerian multiphase model. Drying Technology, (March 2012), 37–41. doi:10.1080/07373930902827379 Syamlal, M., Rogers, W., Andamp; O’Brien, T. J. (1993). MFIX Documentation: Volume 1, Theory Guide. National Technical Information Service. Springfield. Taghipour, F., Ellis, N., Andamp; Wong, C. (2005). Experimental and computational study of gas–solid fluidized bed hydrodynamics. Chemical Engineering Science, 60(24), 6857–6867.
  • [9] doi:10.1016/j.ces.2005.05.044 Van der Hoef, M. a., van Sint Annaland, M., Deen, N. G., Andamp; Kuipers, J. a. M. (2008). Numerical Simulation of Dense Gas-Solid Fluidized Beds: A Multiscale Modeling Strategy. Annual Review of Fluid Mechanics, 40(1), 47–70. doi:10.1146/annurev.fluid.40.111406.102130 Van Wachem, B. G. M., Schouten, J. C., van den Bleek, C. M., Krishna, R., Andamp; Sinclair, J. L. (2001). Comparative analysis of CFD models of dense gas–solid systems. AIChE Journal, 47(5), 1035–1051. doi:10.1002/aic.690470510 Vejahati, F., Mahinpey, N., Ellis, N., Andamp; Nikoo, M. B. (2009). CFD simulation of gas-solid bubbling fluidized bed: A new method for adjusting drag law. The Canadian Journal of Chemical Engineering, 87(1), 19–30. doi:10.1002/cjce.20139 Wang, J., Andamp; Liu, Y. (2010). EMMS-based Eulerian simulation on the hydrodynamics of a bubbling fluidized bed with FCC particles. Powder Technology, 197(3), 241–246.
  • [10] doi:1016/j.powtec.2009.09.022 Yang, N., Wang, W., Ge, W., Andamp; Li, J. (2003). CFD simulation of concurrent-up gas–solid flow in circulating fluidized beds with structure-dependent drag coefficient. Chemical Engineering Journal, 96(1-3), 71–80. doi:1016/j.cej.2003.08.006 Zhang, Y. ., Andamp; Reese, J. M. (2003). The drag force in two-fluid models of gas-solid flows. Chemical Engineering Science, 58(8), 1641–1644.
Como citar:

LUNA, C. M. R.; ÁVILA, I.; CARROCCI, L. R.; ARCE, G. L. A. F.; "A CFD ASSESSMENT OF DRAG MODELS PERFORMANCE ON GAS-SOLID FLOW HYDRODYNAMICS IN A FLUIDIZED BED", p. 5202-5218 . In: Anais do XX Congresso Brasileiro de Engenharia Química - COBEQ 2014 [= Blucher Chemical Engineering Proceedings, v.1, n.2]. São Paulo: Blucher, 2015.
ISSN 2359-1757, DOI 10.5151/chemeng-cobeq2014-0017-27527-160466

últimos 30 dias | último ano | desde a publicação