Full Article - Open Access.

Idioma principal


Rodriguez, D.; Carpio, A.; Einarsson, B.;

Full Article:

Biofilms are aggregates of bacteria attached to surfaces, which are very adaptable to changes in the environment and survive under extreme conditions. These living structures are behind many problems in research and industry. Therefore there is an increasing interest in improving our understanding on biofilms to be able to control them, either designing protocols to destroy them when harmful or promoting their growth when beneficial. A bidimensional cellular automata model for biofilm development is proposed to study the biofilm behaviour as its key growth parameters vary. The model includes several metabolic and spreading mechanisms typical of bacteria: cell division and spreading, detachment mechanisms adapted to the flow and probabilistic rules for EPS matrix generation. Numerical simulations of the model reproduce a number of biofilm patterns observed in real experiments: ripples, streamers, mushroom networks and patches. The influence of the nutrient concentration and the type of flow on the evolution of the bacterial community is monitorized. Biofilm tends to cover the whole surface when enough nutrients are available. Erosion enhances the creation of holes in this cover and promotes a variety of geometric patterns. The survival of the colony and its final shape will depend on the balance between the main growth parameters. Large Reynolds numbers and poor nutrient sources promote the formation of flat, and thin biofilms. Decreasing the Reynolds number or increasing the nutrient and oxygen concentration enhance pattern formation.

Full Article:

Palavras-chave: Biofilms, cellular automata, probabilistic models, erosion, EPS Matrix.,


DOI: 10.5151/meceng-wccm2012-16793

Referências bibliográficas
  • [1] E. Alpkvist, C. Picioreanu, M.C.M. Loosdrecht, and A. Heyden, ”Three-dimensional biofilm model with individual cells and continuum eps matrix”, Biotechnology and Bioengineering, vol. 94, no. 5, pp. 961-979, 2006.
  • [2] K. Anguige, J.R. King, and J.P. Ward, ”A multiphase mathematical model of quorum sensing in maturing Pseudonomas aeruginosa biofilm”, Math. Biosciences, vol. 203, pp. 240-276, 2006.
  • [3] R.M. Donlan and J.W. Costerton, ”Biofilms: survival mechanisms of clinically relevant microorganisms”, Clinical Microbiology Reviews, vol. 15, pp.167-193, 2002.
  • [4] D. Duddu, S. Boradas, D. Chopp, and B. Moran, ”A combined extended finite element and level set method for biofilm growth”, Int. J. for Num. Meth. in Eng, vol. 74, no. 5, pp. 848-870, 2008.
  • [5] H.J. Eberl, C. Picioreanu, J.J. Heijnen, and M.C.M. van Loosdrecht, ”A three dimensional numerical study on the correlation of spatial structure, hydrodynamic conditions, and mass transfer and conversion in biofilms”, Chem. Eng. Sc., vol. 55, pp. 6209-6222, 2000.
  • [6] B. Gottenbos, H.C. van der Mei, and H.J. Busscher, ”Models for studying initial adhesion and surface growth in biofilm formation on surfaces”, Meth. in Enzymol., vol. 310, pp. 523-533, 1999.
  • [7] S.W. Hermanovicz, ”A simple 2D biofilm model yields a variety of morphological features”, Math. Biosciences, vol. 169, pp. 1-14, 2001.
  • [8] E. Humanes, Desarrollo de microbiosensores para aplicaciones aeroespaciales, B. Eng. final project, UPM, 200
  • [9] V. Korstgens, H.C. Flemming, J. Wingender, and W. Borchard, ”Uniaxial compression measurement device for investigation of mechanical stability of biofilms”, J. Microbiol. Meth., vol. 46, pp. 9-17, 2001.
  • [10] M.C.M. Loosdrecht, J.J. Heijnen, H. Eberl, J. Kreft, and C. Piciorenau, ”Mathematical modelling of biofilm structures”, Antonie van Leeuwenhoek, vol. 81, pp. 245-256, 2002.
  • [11] R.D. Monds and G.A. O’Toole, ”The developmental model of microbial biofilms: ten years of a paradigm up to review”, Trends in Microbiology, vol. 17, no. 2, pp. 73-87. 2009.
  • [12] E. Morgenroth, M.C.M. Van Loosdrecht, and O. Wanner, ”Biofilm models for the practicioner”, Water Science and Technology, vol. 41, no. 4-5, pp. 509-512, 2000.
  • [13] C.M. Manuel, O.C. Nunes, and L.F. Melo, ”Dynamics of drinking water biofilm in flow/non flow conditions”, Water Research, vol. 41, pp. 551-562, 2007.
  • [14] C. Picioreanu, M.C.M van Loosdrecht, J.J. Heijnen, ”Two dimensional model of biofilm detachment caused by internal stress from liquid flow”, Biotechnology and Bioengineering, vol. 72, no. 2, pp. 205-218, 2001.
  • [15] C. Picioreanu, J.U. Kreft, and M.C.M. Van Loosdrecht, ”Particle-based multidimensional multiespecies biofilm model”, Appl. and Env. Microbiology, vol. 70, no. 5, pp. 3024- 3040, 2004.
  • [16] G. Pizarro, D. Griffeath, and D.R. Noguera, ”Quantitative cellular automaton model for biofilms”, J. Environ. Engineering, vol. 127, no. 9, pp. 782-789, 2001.
  • [17] B. Purevdorj-Gage, ”Pseudomonas aeruginosa biofilm structure, behavior and hydrodynamics”, PhD Thesis, Montana State University, 2004.
  • [18] D. Rodriguez, ”Elaboración de una base de datos experimental para el modelado matemático de un microsensor fluido-t´ermico basado en biolog´ia sint´etica”, Master Thesis, UCM, 2010.
  • [19] D. Rodriguez et al, ”Pseudomonas putida biofilm growth”, preprint, 2011.
  • [20] B. Schachter, ”Slimy business the biotechnology of biofilms”, Nature biotechnology, vol.
Como citar:

Rodriguez, D.; Carpio, A.; Einarsson, B.; "A CELLULAR AUTOMATA MODEL FOR BIOFILM GROWTH", p. 409-421 . In: In Proceedings of the 10th World Congress on Computational Mechanics [= Blucher Mechanical Engineering Proceedings, v. 1, n. 1]. São Paulo: Blucher, 2014.
ISSN 2358-0828, DOI 10.5151/meceng-wccm2012-16793

últimos 30 dias | último ano | desde a publicação