Conference full papers - Open Access.

Idioma principal

Workflow for a Timber Joinery Robotics

Workflow for a Timber Joinery Robotics

Quitral-Zapata, Francisco Javier; González-Böhme, Luis Felipe; García-Alvarado, Rodrigo; Martínez-Rocamora, Alejandro;

Conference full papers:

We present a novel workflow for timber joinery robotics in low-rise building construction. A parametric 3D model that associates architectural design, structure geometry and robotic fabrication information was implemented using only CAD-based visual robot programming. Our case study is the design and manufacturing process of a two-story timber-framed dwelling. The main frames of the structure were assembled with mortise and tenon timber joints machined in glue-laminated timber using a 7-axis industrial robot in a wood company. This pioneering experience aims to apply timber framing robotics to social housing in emerging countries.

Conference full papers:

Palavras-chave: Robots in architecture, Robotic timber construction, Timber framing, Timber Joinery Robotics, Visual robot programming,

Palavras-chave:

DOI: 10.5151/sigradi2020-40

Referências bibliográficas
  • [1] Adel, A., Thoma, A., Helmreich, M., Gramazio, F., & Kohler, M. (2018). Design of robotically fabricated timber frame structures. Recalibration on Imprecision and Infidelity - Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture, ACADIA 2018, 394–403.
  • [2] Bock, T. (2015). The future of construction automation: Technological disruption and the upcoming ubiquity of robotics. Automation in Construction, 59, 113–121. https://doi.org/10.1016/j.autcon.2015.07.022
  • [3] Braumann, J., & Brell-Cokcan, S. (2011). Parametric robot control: Integrated CAD/CAM for architectural design. Integration Through Computation - Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture, ACADIA 2011, 242–251.
  • [4] Brugnaro, G., Figliola, A., & Dubor, A. (2019). Negotiated Materialization: Design Approaches Integrating Wood Heterogeneity Through Advanced Robotic Fabrication. In F. Bianconi & M. Filippucci (Eds.), Digital Wood Design: Innovative Techniques of Representation in Architectural Design (Vol. 24, pp. 135–158). Springer International Publishing. https://doi.org/10.1007/978-3-030-03676-8_4
  • [5] European Committee for Standardization. (2014). EN 1995-1- 1:2004+A2:2014 Eurocode 5: Design of timber structures - Part 1-1: General — Common rules and rules for buildings. British Standards Institution.
  • [6] Eversmann, P., Gramazio, F., & Kohler, M. (2017). Robotic prefabrication of timber structures: towards automated large-scale spatial assembly. Construction Robotics, 1(1– 4), 49–60. https://doi.org/10.1007/s41693-017-0006-2
  • [7] FAO/UN. (2016). Forestry for a low-carbon future: Integrating forests and wood products in climate change strategies. FAO Forestry Paper 17
  • [8] Gaztelu, L. (1899). Carpintería de armar (2nd ed.). Bailly-Baillière e Hijos.
  • [9] Gerner, M. (1992). Handwerkliche Holzverbindungen der Zimmerer (Deutsche Verlags-Anstalt DVA (ed.)).
  • [10] González, L. F., & Maino, S. (2019). Uniones carpinteras de Valparaíso: la geometría de ensambles y empalmes (RIL (ed.)).
  • [11] González, L. F., Maino, S., Quitral, F., & Hurtado, M. (2017). Reconstrucción robotizada del patrimonio arquitectónico chileno en madera. SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics], 236–241. https://doi.org/10.5151/sigradi2017-
  • [12] 038
  • [13] González, L. F., Quitral, F., & Maino, S. (2017). Roboticus tignarius: robotic reproduction of traditional timber joints for the reconstruction of the architectural heritage of Valparaíso. Construction Robotics, 1(1–4), 61–68. https://doi.org/10.1007/s41693-017-0002-6
  • [14] Green, M. (2012). The case for tall wood buildings: How mass timber offers a safe, economical, and environmental friendly alternative for tall building structures.
  • [15] Heesterman, M., & Sweet, K. (2018). Robotic Connections: Customisable Joints for Timber Construction. SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics], 644–652. https://doi.org/10.5151/sigradi2018-1358
  • [16] Instituto Nacional de Normalización. (2013). NCh2148:2013 Madera laminada encolada estructural - Requisitos, métodos de muestreo e inspección. http://tipbook.iapp.cl/ak/7ba2f4bd8e4ba3715cad4afabda5 061914006c38/embed/view/2148#page/1
  • [17] International Organization for Standardization. (2012). ISO 8373:2012 Robots and robotic devices — Vocabulary. British Standards Institution.
  • [18] Kohlhammer, T., Apolinarska, A. A., Gramazio, F., & Kohler, M. (2017). Design and structural analysis of complex timber structures with glued T-joint connections for robotic assembly. International Journal of Space Structures, 32(3– 4), 199–215. https://doi.org/10.1177/0266351117746268
  • [19] Schindler, C. (2009). Ein architektonisches Periodisierungsmodell anhand fertigungstechnischer Kriterien, dargestellt am Beispiel des Holzbaus [ETH Zürich]. https://doi.org/10.3929/ethz-a-010782581
  • [20] Schwartz, T. (2013). HAL: Extension of a visual programming language to support teaching and research on robotics applied to construction. In S. Brell-Çokcan & J. Braumann (Eds.), Rob | Arch 2012 (pp. 92–101). Springer Vienna.
  • [21] Stumm, S., Braumann, J., von Hilchen, M., & Brell-Cokcan, S. (2017). On-Site Robotic Construction Assistance for Assembly Using A-Priori Knowledge and Human-Robot Collaboration. In A. Rodié & T. Borangiu (Eds.), Advances in Robot Design and Intelligent Control (pp. 583–592). Springer International Publishing.
  • [22] Sumiyoshi, T., & Matsui, G. (1991). Wood joints in classical Japanese Architecture (p. 124).
  • [23] Thoma, A., Adel, A., Helmreich, M., Wehrle, T., Gramazio, F., & Kohler, M. (2018). Robotic Fabrication of Bespoke Timber Frame Modules. In Robotic Fabrication in Architecture, Art and Design 2018 (pp. 447–458). Springer International Publishing. https://doi.org/10.1007/978-3-319-92294-2_34
  • [24] Thomessen, T., Sannæs, P. K., & Lien, T. K. (2004). Intuitive robot programming. Proc. 35th International Symposium on Robotics.
  • [25] Willmann, J., Knauss, M., Bonwetsch, T., Apolinarska, A. A., Gramazio, F., & Kohler, M. (2016). Robotic timber construction - Expanding additive fabrication to new dimensions. Automation in Construction, 61, 16–23. https://doi.org/10.1016/j.autcon.2015.09.011
  • [26] Zilic, F., Elissetche, J. P., & Hernandez, V. (2019). Oportunidades de Manufactura Avanzada para la Industria de la Construcción En Madera. www.polomadera.cl.
Como citar:

Quitral-Zapata, Francisco Javier; González-Böhme, Luis Felipe; García-Alvarado, Rodrigo; Martínez-Rocamora, Alejandro; "Workflow for a Timber Joinery Robotics", p. 291-296 . In: Congreso SIGraDi 2020. São Paulo: Blucher, 2020.
ISSN 2318-6968, DOI 10.5151/sigradi2020-40

últimos 30 dias | último ano | desde a publicação


downloads


visualizações


indexações